Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313204726> ?p ?o ?g. }
Showing items 1 to 75 of
75
with 100 items per page.
- W4313204726 endingPage "95" @default.
- W4313204726 startingPage "91" @default.
- W4313204726 abstract "This study proposed an approach for robot localization using data from multiple low-cost sensors with two goals in mind, to produce accurate localization data and to keep the computation as simple as possible. The approach used data from wheel odometry, inertial-motion data from the Inertial Motion Unit (IMU), and a location fix from a Real-Time Kinematics Global Positioning System (RTK GPS). Each of the sensors is prone to errors in some situations, resulting in inaccurate localization. The odometry is affected by errors caused by slipping when turning the robot or putting it on slippery ground. The IMU produces drifts due to vibrations, and RTK GPS does not return to an accurate fix in (semi-) occluded areas. None of these sensors is accurate enough to produce a precise reading for a sound localization of the robot in an outdoor environment. To solve this challenge, sensor fusion was implemented on the robot to prevent possible localization errors. It worked by selecting the most accurate readings in a given moment to produce a precise pose estimation. To evaluate the approach, two different tests were performed, one with robot localization from the robot operating system (ROS) repository and the other with the presented Field Robot Localization. The first did not perform well, while the second did and was evaluated by comparing the location and orientation estimate with ground truth, captured by a hovering drone above the testing ground, which revealed an average error of 0.005 m±0.220 m in estimating the position, and 0.6°±3.5° when estimating orientation. The tests proved that the developed field robot localization is accurate and robust enough to be used on a ROVITIS 4.0 vineyard robot. Keywords: localization, odometry, IMU, RTK GPS, vineyard, robot, sensors fusion, ROS, precision farming DOI: 10.25165/j.ijabe.20221506.6415 Citation: Rakun J, Pantano M, Lepej P, Lakota M. Sensor fusion-based approach for the field robot localization on Rovitis 4.0 vineyard robot. Int J Agric & Biol Eng, 2022; 15(6): 91–95." @default.
- W4313204726 created "2023-01-06" @default.
- W4313204726 creator A5027454248 @default.
- W4313204726 creator A5030822076 @default.
- W4313204726 creator A5062405913 @default.
- W4313204726 creator A5084519243 @default.
- W4313204726 date "2022-01-01" @default.
- W4313204726 modified "2023-09-26" @default.
- W4313204726 title "Sensor fusion-based approach for the field robot localization on Rovitis 4.0 vineyard robot" @default.
- W4313204726 doi "https://doi.org/10.25165/j.ijabe.20221506.6415" @default.
- W4313204726 hasPublicationYear "2022" @default.
- W4313204726 type Work @default.
- W4313204726 citedByCount "0" @default.
- W4313204726 crossrefType "journal-article" @default.
- W4313204726 hasAuthorship W4313204726A5027454248 @default.
- W4313204726 hasAuthorship W4313204726A5030822076 @default.
- W4313204726 hasAuthorship W4313204726A5062405913 @default.
- W4313204726 hasAuthorship W4313204726A5084519243 @default.
- W4313204726 hasBestOaLocation W43132047261 @default.
- W4313204726 hasConcept C121332964 @default.
- W4313204726 hasConcept C146849305 @default.
- W4313204726 hasConcept C154945302 @default.
- W4313204726 hasConcept C192299074 @default.
- W4313204726 hasConcept C19966478 @default.
- W4313204726 hasConcept C31972630 @default.
- W4313204726 hasConcept C33954974 @default.
- W4313204726 hasConcept C39920418 @default.
- W4313204726 hasConcept C41008148 @default.
- W4313204726 hasConcept C49441653 @default.
- W4313204726 hasConcept C5799516 @default.
- W4313204726 hasConcept C60229501 @default.
- W4313204726 hasConcept C74222875 @default.
- W4313204726 hasConcept C74650414 @default.
- W4313204726 hasConcept C76155785 @default.
- W4313204726 hasConcept C79061980 @default.
- W4313204726 hasConcept C90509273 @default.
- W4313204726 hasConcept C93717769 @default.
- W4313204726 hasConceptScore W4313204726C121332964 @default.
- W4313204726 hasConceptScore W4313204726C146849305 @default.
- W4313204726 hasConceptScore W4313204726C154945302 @default.
- W4313204726 hasConceptScore W4313204726C192299074 @default.
- W4313204726 hasConceptScore W4313204726C19966478 @default.
- W4313204726 hasConceptScore W4313204726C31972630 @default.
- W4313204726 hasConceptScore W4313204726C33954974 @default.
- W4313204726 hasConceptScore W4313204726C39920418 @default.
- W4313204726 hasConceptScore W4313204726C41008148 @default.
- W4313204726 hasConceptScore W4313204726C49441653 @default.
- W4313204726 hasConceptScore W4313204726C5799516 @default.
- W4313204726 hasConceptScore W4313204726C60229501 @default.
- W4313204726 hasConceptScore W4313204726C74222875 @default.
- W4313204726 hasConceptScore W4313204726C74650414 @default.
- W4313204726 hasConceptScore W4313204726C76155785 @default.
- W4313204726 hasConceptScore W4313204726C79061980 @default.
- W4313204726 hasConceptScore W4313204726C90509273 @default.
- W4313204726 hasConceptScore W4313204726C93717769 @default.
- W4313204726 hasIssue "6" @default.
- W4313204726 hasLocation W43132047261 @default.
- W4313204726 hasOpenAccess W4313204726 @default.
- W4313204726 hasPrimaryLocation W43132047261 @default.
- W4313204726 hasRelatedWork W2008961943 @default.
- W4313204726 hasRelatedWork W2028864324 @default.
- W4313204726 hasRelatedWork W2936036411 @default.
- W4313204726 hasRelatedWork W2950629728 @default.
- W4313204726 hasRelatedWork W2975760903 @default.
- W4313204726 hasRelatedWork W3011348788 @default.
- W4313204726 hasRelatedWork W3107115059 @default.
- W4313204726 hasRelatedWork W4285265093 @default.
- W4313204726 hasRelatedWork W4385275388 @default.
- W4313204726 hasRelatedWork W1969538473 @default.
- W4313204726 hasVolume "15" @default.
- W4313204726 isParatext "false" @default.
- W4313204726 isRetracted "false" @default.
- W4313204726 workType "article" @default.