Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313204828> ?p ?o ?g. }
- W4313204828 endingPage "e39650" @default.
- W4313204828 startingPage "e39650" @default.
- W4313204828 abstract "Background Estimating surgical case duration accurately is an important operating room efficiency metric. Current predictive techniques in spine surgery include less sophisticated approaches such as classical multivariable statistical models. Machine learning approaches have been used to predict outcomes such as length of stay and time returning to normal work, but have not been focused on case duration. Objective The primary objective of this 4-year, single-academic-center, retrospective study was to use an ensemble learning approach that may improve the accuracy of scheduled case duration for spine surgery. The primary outcome measure was case duration. Methods We compared machine learning models using surgical and patient features to our institutional method, which used historic averages and surgeon adjustments as needed. We implemented multivariable linear regression, random forest, bagging, and XGBoost (Extreme Gradient Boosting) and calculated the average R2, root-mean-square error (RMSE), explained variance, and mean absolute error (MAE) using k-fold cross-validation. We then used the SHAP (Shapley Additive Explanations) explainer model to determine feature importance. Results A total of 3189 patients who underwent spine surgery were included. The institution’s current method of predicting case times has a very poor coefficient of determination with actual times (R2=0.213). On k-fold cross-validation, the linear regression model had an explained variance score of 0.345, an R2 of 0.34, an RMSE of 162.84 minutes, and an MAE of 127.22 minutes. Among all models, the XGBoost regressor performed the best with an explained variance score of 0.778, an R2 of 0.770, an RMSE of 92.95 minutes, and an MAE of 44.31 minutes. Based on SHAP analysis of the XGBoost regression, body mass index, spinal fusions, surgical procedure, and number of spine levels involved were the features with the most impact on the model. Conclusions Using ensemble learning-based predictive models, specifically XGBoost regression, can improve the accuracy of the estimation of spine surgery times." @default.
- W4313204828 created "2023-01-06" @default.
- W4313204828 creator A5024417919 @default.
- W4313204828 creator A5040846987 @default.
- W4313204828 creator A5043846432 @default.
- W4313204828 creator A5080399787 @default.
- W4313204828 creator A5085615582 @default.
- W4313204828 creator A5086648037 @default.
- W4313204828 creator A5090998894 @default.
- W4313204828 date "2023-01-26" @default.
- W4313204828 modified "2023-09-23" @default.
- W4313204828 title "An Ensemble Learning Approach to Improving Prediction of Case Duration for Spine Surgery: Algorithm Development and Validation" @default.
- W4313204828 cites W1963847570 @default.
- W4313204828 cites W1965713033 @default.
- W4313204828 cites W1969279734 @default.
- W4313204828 cites W197520142 @default.
- W4313204828 cites W1980904312 @default.
- W4313204828 cites W1988068488 @default.
- W4313204828 cites W1993534814 @default.
- W4313204828 cites W2018909130 @default.
- W4313204828 cites W2047928166 @default.
- W4313204828 cites W2052992999 @default.
- W4313204828 cites W2076833676 @default.
- W4313204828 cites W2125208830 @default.
- W4313204828 cites W2337589238 @default.
- W4313204828 cites W2343457255 @default.
- W4313204828 cites W2398978043 @default.
- W4313204828 cites W2409067879 @default.
- W4313204828 cites W2598560588 @default.
- W4313204828 cites W2737934651 @default.
- W4313204828 cites W2770514878 @default.
- W4313204828 cites W2788941211 @default.
- W4313204828 cites W2790233912 @default.
- W4313204828 cites W2802059983 @default.
- W4313204828 cites W2885851491 @default.
- W4313204828 cites W2896370912 @default.
- W4313204828 cites W2905101836 @default.
- W4313204828 cites W2907343059 @default.
- W4313204828 cites W2908511441 @default.
- W4313204828 cites W2910629495 @default.
- W4313204828 cites W2934399013 @default.
- W4313204828 cites W2947424271 @default.
- W4313204828 cites W2998189348 @default.
- W4313204828 cites W3011083270 @default.
- W4313204828 cites W3012554154 @default.
- W4313204828 cites W3022808773 @default.
- W4313204828 cites W3121798080 @default.
- W4313204828 cites W3201570897 @default.
- W4313204828 cites W4206163452 @default.
- W4313204828 cites W4224323344 @default.
- W4313204828 cites W97447782 @default.
- W4313204828 doi "https://doi.org/10.2196/39650" @default.
- W4313204828 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36701181" @default.
- W4313204828 hasPublicationYear "2023" @default.
- W4313204828 type Work @default.
- W4313204828 citedByCount "2" @default.
- W4313204828 countsByYear W43132048282023 @default.
- W4313204828 crossrefType "journal-article" @default.
- W4313204828 hasAuthorship W4313204828A5024417919 @default.
- W4313204828 hasAuthorship W4313204828A5040846987 @default.
- W4313204828 hasAuthorship W4313204828A5043846432 @default.
- W4313204828 hasAuthorship W4313204828A5080399787 @default.
- W4313204828 hasAuthorship W4313204828A5085615582 @default.
- W4313204828 hasAuthorship W4313204828A5086648037 @default.
- W4313204828 hasAuthorship W4313204828A5090998894 @default.
- W4313204828 hasBestOaLocation W43132048281 @default.
- W4313204828 hasConcept C105795698 @default.
- W4313204828 hasConcept C11413529 @default.
- W4313204828 hasConcept C119857082 @default.
- W4313204828 hasConcept C121955636 @default.
- W4313204828 hasConcept C127413603 @default.
- W4313204828 hasConcept C139945424 @default.
- W4313204828 hasConcept C144133560 @default.
- W4313204828 hasConcept C154945302 @default.
- W4313204828 hasConcept C169258074 @default.
- W4313204828 hasConcept C176217482 @default.
- W4313204828 hasConcept C196083921 @default.
- W4313204828 hasConcept C21547014 @default.
- W4313204828 hasConcept C33923547 @default.
- W4313204828 hasConcept C41008148 @default.
- W4313204828 hasConcept C45942800 @default.
- W4313204828 hasConcept C48921125 @default.
- W4313204828 hasConcept C70153297 @default.
- W4313204828 hasConcept C83546350 @default.
- W4313204828 hasConceptScore W4313204828C105795698 @default.
- W4313204828 hasConceptScore W4313204828C11413529 @default.
- W4313204828 hasConceptScore W4313204828C119857082 @default.
- W4313204828 hasConceptScore W4313204828C121955636 @default.
- W4313204828 hasConceptScore W4313204828C127413603 @default.
- W4313204828 hasConceptScore W4313204828C139945424 @default.
- W4313204828 hasConceptScore W4313204828C144133560 @default.
- W4313204828 hasConceptScore W4313204828C154945302 @default.
- W4313204828 hasConceptScore W4313204828C169258074 @default.
- W4313204828 hasConceptScore W4313204828C176217482 @default.
- W4313204828 hasConceptScore W4313204828C196083921 @default.
- W4313204828 hasConceptScore W4313204828C21547014 @default.
- W4313204828 hasConceptScore W4313204828C33923547 @default.
- W4313204828 hasConceptScore W4313204828C41008148 @default.