Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313206312> ?p ?o ?g. }
Showing items 1 to 100 of
100
with 100 items per page.
- W4313206312 endingPage "386" @default.
- W4313206312 startingPage "374" @default.
- W4313206312 abstract "An understanding of the behavior of cohesive sediment is required to solve various engineering problems such as scour around bridge elements, mitigation of soil erosion, pavement design, river bed degradation, stable channel design. Pavement foundation designers principally use the California bearing ratio (CBR) to describe the subgrade and subbase materials and their strength. Several laboratory experiments were done to study the variation in the CBR of cohesive mixtures comprised of clay–gravel mixtures. Nine different clay–gravel mixtures were used in which the clay content varies from 10% to 50% by weight. The variation of the CBR with clay percentage, moisture content, and undrained shear strength parameters was studied. The CBR value reduces with the increase in the moisture content and clay fraction in the mixtures and increases with an increase in the dry density of the mixture under unsoaked conditions. The CBR also increases with the increase of the angle of internal friction of clay–gravel mixtures. A functional relation has been identified to estimate the CBR of clay–gravel mixtures. Using multiple linear regression analysis (MLRA), a relation is proposed to estimate the CBR of clay–gravel mixtures under unsoaked conditions. A statistical analysis was done to judge the behavior of the pertinent variables on the CBR. The proposed relation predicts the CBR of clay–gravel mixtures very well. Artificial neural network (ANN) analysis using R programming was also done to determine the effects of the pertinent variables on the CBR. ANN methodology was applied to predict the contribution of each variable. Three different methods: Garson algorithm, Olden algorithm, and Lek's profile model are used to assess the influence of variable parameters. The Olden algorithm and Lek's profile both show positive association of cohesion with CBR in an unsoaked condition. The role of moisture content was found to be marginally negative in the Olden algorithm and Lek's profile results. It is found that both the ANN and MLRA models are accurate in predicting the CBR of clay–gravel mixtures. It was further found that the MLRA and ANN models are reliable and rapid tools for correct assessment of the CBR of cohesive soil mixtures using the basic soil properties." @default.
- W4313206312 created "2023-01-06" @default.
- W4313206312 creator A5008427326 @default.
- W4313206312 creator A5019412369 @default.
- W4313206312 creator A5030582102 @default.
- W4313206312 date "2023-06-01" @default.
- W4313206312 modified "2023-10-16" @default.
- W4313206312 title "Influence of cohesion on California bearing ratio of clay–gravel mixtures" @default.
- W4313206312 cites W1509880931 @default.
- W4313206312 cites W1548075175 @default.
- W4313206312 cites W1599308204 @default.
- W4313206312 cites W1974644477 @default.
- W4313206312 cites W1982029402 @default.
- W4313206312 cites W1985275455 @default.
- W4313206312 cites W2013352515 @default.
- W4313206312 cites W2016482889 @default.
- W4313206312 cites W2023561392 @default.
- W4313206312 cites W2027738544 @default.
- W4313206312 cites W2035026648 @default.
- W4313206312 cites W2040216470 @default.
- W4313206312 cites W2043356824 @default.
- W4313206312 cites W2044498981 @default.
- W4313206312 cites W2044961793 @default.
- W4313206312 cites W2062145632 @default.
- W4313206312 cites W2071741483 @default.
- W4313206312 cites W2084910096 @default.
- W4313206312 cites W2085646807 @default.
- W4313206312 cites W2106100979 @default.
- W4313206312 cites W2140254710 @default.
- W4313206312 cites W2885307904 @default.
- W4313206312 cites W2892655597 @default.
- W4313206312 cites W2903475424 @default.
- W4313206312 cites W3087440331 @default.
- W4313206312 cites W3100557561 @default.
- W4313206312 cites W3194582323 @default.
- W4313206312 cites W3200680222 @default.
- W4313206312 cites W4200327103 @default.
- W4313206312 cites W4210363384 @default.
- W4313206312 cites W4210874398 @default.
- W4313206312 cites W4220658484 @default.
- W4313206312 cites W4283778850 @default.
- W4313206312 cites W2538121279 @default.
- W4313206312 doi "https://doi.org/10.1016/j.ijsrc.2022.12.005" @default.
- W4313206312 hasPublicationYear "2023" @default.
- W4313206312 type Work @default.
- W4313206312 citedByCount "0" @default.
- W4313206312 crossrefType "journal-article" @default.
- W4313206312 hasAuthorship W4313206312A5008427326 @default.
- W4313206312 hasAuthorship W4313206312A5019412369 @default.
- W4313206312 hasAuthorship W4313206312A5030582102 @default.
- W4313206312 hasConcept C104054115 @default.
- W4313206312 hasConcept C116973930 @default.
- W4313206312 hasConcept C127313418 @default.
- W4313206312 hasConcept C127893833 @default.
- W4313206312 hasConcept C151730666 @default.
- W4313206312 hasConcept C159390177 @default.
- W4313206312 hasConcept C159750122 @default.
- W4313206312 hasConcept C178790620 @default.
- W4313206312 hasConcept C182377489 @default.
- W4313206312 hasConcept C185592680 @default.
- W4313206312 hasConcept C187320778 @default.
- W4313206312 hasConcept C24939127 @default.
- W4313206312 hasConcept C2816523 @default.
- W4313206312 hasConcept C37646163 @default.
- W4313206312 hasConcept C39432304 @default.
- W4313206312 hasConceptScore W4313206312C104054115 @default.
- W4313206312 hasConceptScore W4313206312C116973930 @default.
- W4313206312 hasConceptScore W4313206312C127313418 @default.
- W4313206312 hasConceptScore W4313206312C127893833 @default.
- W4313206312 hasConceptScore W4313206312C151730666 @default.
- W4313206312 hasConceptScore W4313206312C159390177 @default.
- W4313206312 hasConceptScore W4313206312C159750122 @default.
- W4313206312 hasConceptScore W4313206312C178790620 @default.
- W4313206312 hasConceptScore W4313206312C182377489 @default.
- W4313206312 hasConceptScore W4313206312C185592680 @default.
- W4313206312 hasConceptScore W4313206312C187320778 @default.
- W4313206312 hasConceptScore W4313206312C24939127 @default.
- W4313206312 hasConceptScore W4313206312C2816523 @default.
- W4313206312 hasConceptScore W4313206312C37646163 @default.
- W4313206312 hasConceptScore W4313206312C39432304 @default.
- W4313206312 hasIssue "3" @default.
- W4313206312 hasLocation W43132063121 @default.
- W4313206312 hasOpenAccess W4313206312 @default.
- W4313206312 hasPrimaryLocation W43132063121 @default.
- W4313206312 hasRelatedWork W2390494851 @default.
- W4313206312 hasRelatedWork W2948956984 @default.
- W4313206312 hasRelatedWork W3009095037 @default.
- W4313206312 hasRelatedWork W3080661627 @default.
- W4313206312 hasRelatedWork W3081453691 @default.
- W4313206312 hasRelatedWork W4281572474 @default.
- W4313206312 hasRelatedWork W4281709756 @default.
- W4313206312 hasRelatedWork W4312468085 @default.
- W4313206312 hasRelatedWork W4313206312 @default.
- W4313206312 hasRelatedWork W4319163340 @default.
- W4313206312 hasVolume "38" @default.
- W4313206312 isParatext "false" @default.
- W4313206312 isRetracted "false" @default.
- W4313206312 workType "article" @default.