Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313207600> ?p ?o ?g. }
Showing items 1 to 87 of
87
with 100 items per page.
- W4313207600 endingPage "2671" @default.
- W4313207600 startingPage "2654" @default.
- W4313207600 abstract "Increasing fossil fuel consumption and consequently the effects of greenhouse gases (GHGs) on the environment and economy are a major concern for all nations and governments. Electric vehicles (EVs) with plug-in capabilities have the potential to ease such problems. However, the extracted power from the grid for charging the EVs' batteries will significantly impact daily power demand. To satisfy the increasing demand and ensure generation capacity adequacy, the generation expansion planning (GEP) problem is solved to determine the investment decisions for electricity generation sources. Even though there are no centralized utilities for generation planning in most markets, there is still a need to realistically solve the GEP problems and find the optimal investment decisions to tailor the incentives used by most governments to guide the market. There is also a need for a tool to analyze the effect of different charging power levels, charging policies, and penetration levels. The main goal of this paper is to provide a tool to determine realistic optimal investment plans and evaluate different cases. It is also very important to consider the stochastic nature of the electricity demand in GEP problems. We propose a scenario-based stochastic programming model to incorporate the variability in the electricity demand due to EV charging through a set of scenarios generated by Monte Carlo Simulation. The methodology starts with applying a simulation method to generate the electricity demand of EVs by considering all the possible factors affecting EVs' demand. Each iteration of this simulation represents a possible demand profile as a result of penetrating the EVs into the market. Using all these demand profiles in GEP is preferable, but it is not computationally efficient. Computational tractability is achieved by using the clustering technique to reduce the size of such scenarios. We propose clustering methods to select a representative set from the data sets generated by the simulation and integrate EVs into GEP problems by using the selected set. The GEP models are defined to represent EVs' demand explicitly and then solved to imply the benefit of the suggested methods. The results show that GEP models with a representative set produce more realistic solutions than the GEP models including only average EVs demand. To select representative sets, different clustering techniques and distance measurements are used and compared with respect to their performances. Two different methods are defined to choose the best number of clusters: the silhouette coefficient method and the elbow method. For each method, five different distance measurement techniques are used. In each of these techniques, three approaches are evaluated for the representative point: Min, Max, and Average. A key contribution of this article is to explore and evaluate the quality of GEP models for each case according to how close the total cost obtained from the GEP model by using clustered load curves to the total cost obtained by using the full data sets generated by simulation." @default.
- W4313207600 created "2023-01-06" @default.
- W4313207600 creator A5062617550 @default.
- W4313207600 creator A5065330962 @default.
- W4313207600 creator A5074128653 @default.
- W4313207600 date "2022-11-01" @default.
- W4313207600 modified "2023-10-01" @default.
- W4313207600 title "Application of hierarchical clustering on electricity demand of electric vehicles for GEP problems" @default.
- W4313207600 doi "https://doi.org/10.55730/1300-0632.3961" @default.
- W4313207600 hasPublicationYear "2022" @default.
- W4313207600 type Work @default.
- W4313207600 citedByCount "1" @default.
- W4313207600 countsByYear W43132076002023 @default.
- W4313207600 crossrefType "journal-article" @default.
- W4313207600 hasAuthorship W4313207600A5062617550 @default.
- W4313207600 hasAuthorship W4313207600A5065330962 @default.
- W4313207600 hasAuthorship W4313207600A5074128653 @default.
- W4313207600 hasBestOaLocation W43132076001 @default.
- W4313207600 hasConcept C119599485 @default.
- W4313207600 hasConcept C121332964 @default.
- W4313207600 hasConcept C126255220 @default.
- W4313207600 hasConcept C127413603 @default.
- W4313207600 hasConcept C134560507 @default.
- W4313207600 hasConcept C137631369 @default.
- W4313207600 hasConcept C146733006 @default.
- W4313207600 hasConcept C147940328 @default.
- W4313207600 hasConcept C162324750 @default.
- W4313207600 hasConcept C163258240 @default.
- W4313207600 hasConcept C17744445 @default.
- W4313207600 hasConcept C18903297 @default.
- W4313207600 hasConcept C199539241 @default.
- W4313207600 hasConcept C206658404 @default.
- W4313207600 hasConcept C27548731 @default.
- W4313207600 hasConcept C2779438525 @default.
- W4313207600 hasConcept C33923547 @default.
- W4313207600 hasConcept C41008148 @default.
- W4313207600 hasConcept C423512 @default.
- W4313207600 hasConcept C42475967 @default.
- W4313207600 hasConcept C47737302 @default.
- W4313207600 hasConcept C62520636 @default.
- W4313207600 hasConcept C86803240 @default.
- W4313207600 hasConcept C94625758 @default.
- W4313207600 hasConceptScore W4313207600C119599485 @default.
- W4313207600 hasConceptScore W4313207600C121332964 @default.
- W4313207600 hasConceptScore W4313207600C126255220 @default.
- W4313207600 hasConceptScore W4313207600C127413603 @default.
- W4313207600 hasConceptScore W4313207600C134560507 @default.
- W4313207600 hasConceptScore W4313207600C137631369 @default.
- W4313207600 hasConceptScore W4313207600C146733006 @default.
- W4313207600 hasConceptScore W4313207600C147940328 @default.
- W4313207600 hasConceptScore W4313207600C162324750 @default.
- W4313207600 hasConceptScore W4313207600C163258240 @default.
- W4313207600 hasConceptScore W4313207600C17744445 @default.
- W4313207600 hasConceptScore W4313207600C18903297 @default.
- W4313207600 hasConceptScore W4313207600C199539241 @default.
- W4313207600 hasConceptScore W4313207600C206658404 @default.
- W4313207600 hasConceptScore W4313207600C27548731 @default.
- W4313207600 hasConceptScore W4313207600C2779438525 @default.
- W4313207600 hasConceptScore W4313207600C33923547 @default.
- W4313207600 hasConceptScore W4313207600C41008148 @default.
- W4313207600 hasConceptScore W4313207600C423512 @default.
- W4313207600 hasConceptScore W4313207600C42475967 @default.
- W4313207600 hasConceptScore W4313207600C47737302 @default.
- W4313207600 hasConceptScore W4313207600C62520636 @default.
- W4313207600 hasConceptScore W4313207600C86803240 @default.
- W4313207600 hasConceptScore W4313207600C94625758 @default.
- W4313207600 hasIssue "7" @default.
- W4313207600 hasLocation W43132076001 @default.
- W4313207600 hasLocation W43132076002 @default.
- W4313207600 hasOpenAccess W4313207600 @default.
- W4313207600 hasPrimaryLocation W43132076001 @default.
- W4313207600 hasRelatedWork W1572677158 @default.
- W4313207600 hasRelatedWork W2332936991 @default.
- W4313207600 hasRelatedWork W2789506798 @default.
- W4313207600 hasRelatedWork W2893016014 @default.
- W4313207600 hasRelatedWork W2894942102 @default.
- W4313207600 hasRelatedWork W2948041165 @default.
- W4313207600 hasRelatedWork W3033011016 @default.
- W4313207600 hasRelatedWork W3123868675 @default.
- W4313207600 hasRelatedWork W3177111942 @default.
- W4313207600 hasRelatedWork W4294687252 @default.
- W4313207600 hasVolume "30" @default.
- W4313207600 isParatext "false" @default.
- W4313207600 isRetracted "false" @default.
- W4313207600 workType "article" @default.