Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313209570> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313209570 endingPage "12700" @default.
- W4313209570 startingPage "12700" @default.
- W4313209570 abstract "The traditional fast successive-cancellation (SC) decoding algorithm can effectively reduce the decoding steps, but the decoding adopts a sub-optimal algorithm, so it cannot improve the bit error performance. In order to improve the bit error performance while maintaining low decoding steps, we introduce a neural network subcode that can achieve optimal decoding performance and combine it with the traditional fast SC decoding algorithm. While exploring how to combine neural network node (NNN) with R1, R0, single-parity checks (SPC), and Rep, we find that the decoding failed sometimes when the NNN was not the last subcode. To solve the problem, we propose two neural network-assisted decoding schemes: a key-bit-based subcode NN-assisted decoding (KSNNAD) scheme and a last subcode NN-assisted decoding (LSNNAD) scheme. The LSNNAD scheme recognizes the last subcode as an NNN, and the NNN with nearly optimal decoding performance gives rise to some performance improvements. To further improve performance, the KSNNAD scheme recognizes the subcode with a key bit as an NNN and changes the training data and label accordingly. Computer simulation results confirm that the two schemes can effectively reduce the decoding steps, and their bit error rates (BERs) are lower than those of the successive-cancellation decoder (SCD)." @default.
- W4313209570 created "2023-01-06" @default.
- W4313209570 creator A5001822062 @default.
- W4313209570 creator A5029820392 @default.
- W4313209570 creator A5055736577 @default.
- W4313209570 creator A5082657369 @default.
- W4313209570 date "2022-12-11" @default.
- W4313209570 modified "2023-10-18" @default.
- W4313209570 title "Neural-Network-Assisted Polar Code Decoding Schemes" @default.
- W4313209570 cites W1562717735 @default.
- W4313209570 cites W183754908 @default.
- W4313209570 cites W1991133427 @default.
- W4313209570 cites W1995875735 @default.
- W4313209570 cites W2003204237 @default.
- W4313209570 cites W2026883296 @default.
- W4313209570 cites W2051270424 @default.
- W4313209570 cites W2083774980 @default.
- W4313209570 cites W2102251435 @default.
- W4313209570 cites W2106045225 @default.
- W4313209570 cites W2119461808 @default.
- W4313209570 cites W2128765501 @default.
- W4313209570 cites W2130768170 @default.
- W4313209570 cites W2135764410 @default.
- W4313209570 cites W2148575324 @default.
- W4313209570 cites W2150498905 @default.
- W4313209570 cites W2584943905 @default.
- W4313209570 cites W2589785008 @default.
- W4313209570 cites W2770861014 @default.
- W4313209570 cites W2889372359 @default.
- W4313209570 cites W2896936827 @default.
- W4313209570 cites W2923621805 @default.
- W4313209570 cites W2951258906 @default.
- W4313209570 cites W2963814677 @default.
- W4313209570 cites W2971742283 @default.
- W4313209570 cites W3013817917 @default.
- W4313209570 cites W3026333826 @default.
- W4313209570 cites W3080618786 @default.
- W4313209570 cites W3118772932 @default.
- W4313209570 cites W4221008070 @default.
- W4313209570 doi "https://doi.org/10.3390/app122412700" @default.
- W4313209570 hasPublicationYear "2022" @default.
- W4313209570 type Work @default.
- W4313209570 citedByCount "1" @default.
- W4313209570 countsByYear W43132095702023 @default.
- W4313209570 crossrefType "journal-article" @default.
- W4313209570 hasAuthorship W4313209570A5001822062 @default.
- W4313209570 hasAuthorship W4313209570A5029820392 @default.
- W4313209570 hasAuthorship W4313209570A5055736577 @default.
- W4313209570 hasAuthorship W4313209570A5082657369 @default.
- W4313209570 hasBestOaLocation W43132095701 @default.
- W4313209570 hasConcept C11413529 @default.
- W4313209570 hasConcept C154945302 @default.
- W4313209570 hasConcept C157125643 @default.
- W4313209570 hasConcept C193969084 @default.
- W4313209570 hasConcept C204397858 @default.
- W4313209570 hasConcept C26517878 @default.
- W4313209570 hasConcept C38652104 @default.
- W4313209570 hasConcept C41008148 @default.
- W4313209570 hasConcept C50644808 @default.
- W4313209570 hasConcept C57273362 @default.
- W4313209570 hasConcept C78944582 @default.
- W4313209570 hasConceptScore W4313209570C11413529 @default.
- W4313209570 hasConceptScore W4313209570C154945302 @default.
- W4313209570 hasConceptScore W4313209570C157125643 @default.
- W4313209570 hasConceptScore W4313209570C193969084 @default.
- W4313209570 hasConceptScore W4313209570C204397858 @default.
- W4313209570 hasConceptScore W4313209570C26517878 @default.
- W4313209570 hasConceptScore W4313209570C38652104 @default.
- W4313209570 hasConceptScore W4313209570C41008148 @default.
- W4313209570 hasConceptScore W4313209570C50644808 @default.
- W4313209570 hasConceptScore W4313209570C57273362 @default.
- W4313209570 hasConceptScore W4313209570C78944582 @default.
- W4313209570 hasFunder F4320321001 @default.
- W4313209570 hasIssue "24" @default.
- W4313209570 hasLocation W43132095701 @default.
- W4313209570 hasLocation W43132095702 @default.
- W4313209570 hasLocation W43132095703 @default.
- W4313209570 hasOpenAccess W4313209570 @default.
- W4313209570 hasPrimaryLocation W43132095701 @default.
- W4313209570 hasRelatedWork W1971355272 @default.
- W4313209570 hasRelatedWork W2351361564 @default.
- W4313209570 hasRelatedWork W2357077655 @default.
- W4313209570 hasRelatedWork W2369600518 @default.
- W4313209570 hasRelatedWork W2370284973 @default.
- W4313209570 hasRelatedWork W2383267581 @default.
- W4313209570 hasRelatedWork W2385322349 @default.
- W4313209570 hasRelatedWork W2387060917 @default.
- W4313209570 hasRelatedWork W2782734975 @default.
- W4313209570 hasRelatedWork W4381383955 @default.
- W4313209570 hasVolume "12" @default.
- W4313209570 isParatext "false" @default.
- W4313209570 isRetracted "false" @default.
- W4313209570 workType "article" @default.