Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313215904> ?p ?o ?g. }
- W4313215904 endingPage "105722" @default.
- W4313215904 startingPage "105722" @default.
- W4313215904 abstract "Electroencephalography (EEG) signals are crucial data to understand brain activities. Thus, many papers have been proposed about EEG signals. In particular, machine learning techniques have been used/presented to extract information from EEG signals. However, there are limited works on sentence classification using this data. To fill this gap, we propose an automated EEG signal classification model. In this model, we have presented a new molecular-based feature extractor, which utilizes a graph of the testosterone molecular structure. The proposed testosterone graph-based pattern is a nature-inspired pattern. The motivation is to show the feature extraction capability of the chemical-based graphs. Hence, we presented a hand-modeled EEG classification architecture. Our architecture uses wavelet packet decomposition (WPD) to generate wavelet bands to extract low and high-level features. The statistical feature extraction function has been used to generate statistical features, and our proposed testosterone pattern (TesPat) generates textural features. A feature selector has been used to choose the most informative features (neighborhood component analysis). Channel-wise results have been calculated by deploying a shallow classifier (k nearest neighbors). Majority voting has been conducted to create general results, and our proposed model selects the best-resulted predicted labels vector. Our proposed model attained a classification accuracy of >97% with 10-fold cross-validation (CV) and >91% with leave-one subject out (LOSO) CV. Our high classification results demonstrate that our presented system is an accurate and robust sentence classification model. The novelty of this work is the development of an accurate testosterone-based learning model using three EEG sentence datasets." @default.
- W4313215904 created "2023-01-06" @default.
- W4313215904 creator A5003140689 @default.
- W4313215904 creator A5016221020 @default.
- W4313215904 creator A5029287310 @default.
- W4313215904 creator A5040772000 @default.
- W4313215904 creator A5045783666 @default.
- W4313215904 creator A5049093311 @default.
- W4313215904 creator A5052732337 @default.
- W4313215904 creator A5065941630 @default.
- W4313215904 creator A5091262404 @default.
- W4313215904 date "2023-03-01" @default.
- W4313215904 modified "2023-10-17" @default.
- W4313215904 title "A new one-dimensional testosterone pattern-based EEG sentence classification method" @default.
- W4313215904 cites W2039930961 @default.
- W4313215904 cites W2088252378 @default.
- W4313215904 cites W2131081720 @default.
- W4313215904 cites W2163352848 @default.
- W4313215904 cites W2346357836 @default.
- W4313215904 cites W2912610206 @default.
- W4313215904 cites W3009068877 @default.
- W4313215904 cites W3049410214 @default.
- W4313215904 cites W3082415811 @default.
- W4313215904 cites W3157219251 @default.
- W4313215904 cites W3169742226 @default.
- W4313215904 cites W3170087560 @default.
- W4313215904 cites W3181882215 @default.
- W4313215904 cites W3196221522 @default.
- W4313215904 cites W3197396163 @default.
- W4313215904 cites W3199376589 @default.
- W4313215904 cites W3205392914 @default.
- W4313215904 cites W3206678152 @default.
- W4313215904 cites W4200136650 @default.
- W4313215904 cites W4205338844 @default.
- W4313215904 cites W4210390225 @default.
- W4313215904 cites W4210468029 @default.
- W4313215904 cites W4220774460 @default.
- W4313215904 cites W4221105534 @default.
- W4313215904 cites W4224943994 @default.
- W4313215904 cites W4225140850 @default.
- W4313215904 cites W4226474955 @default.
- W4313215904 cites W4293237875 @default.
- W4313215904 cites W4294862274 @default.
- W4313215904 cites W4295923226 @default.
- W4313215904 cites W4297399257 @default.
- W4313215904 doi "https://doi.org/10.1016/j.engappai.2022.105722" @default.
- W4313215904 hasPublicationYear "2023" @default.
- W4313215904 type Work @default.
- W4313215904 citedByCount "4" @default.
- W4313215904 countsByYear W43132159042023 @default.
- W4313215904 crossrefType "journal-article" @default.
- W4313215904 hasAuthorship W4313215904A5003140689 @default.
- W4313215904 hasAuthorship W4313215904A5016221020 @default.
- W4313215904 hasAuthorship W4313215904A5029287310 @default.
- W4313215904 hasAuthorship W4313215904A5040772000 @default.
- W4313215904 hasAuthorship W4313215904A5045783666 @default.
- W4313215904 hasAuthorship W4313215904A5049093311 @default.
- W4313215904 hasAuthorship W4313215904A5052732337 @default.
- W4313215904 hasAuthorship W4313215904A5065941630 @default.
- W4313215904 hasAuthorship W4313215904A5091262404 @default.
- W4313215904 hasConcept C118552586 @default.
- W4313215904 hasConcept C12267149 @default.
- W4313215904 hasConcept C153180895 @default.
- W4313215904 hasConcept C154945302 @default.
- W4313215904 hasConcept C15744967 @default.
- W4313215904 hasConcept C169258074 @default.
- W4313215904 hasConcept C28490314 @default.
- W4313215904 hasConcept C41008148 @default.
- W4313215904 hasConcept C47432892 @default.
- W4313215904 hasConcept C522805319 @default.
- W4313215904 hasConcept C52622490 @default.
- W4313215904 hasConcept C83665646 @default.
- W4313215904 hasConcept C95623464 @default.
- W4313215904 hasConceptScore W4313215904C118552586 @default.
- W4313215904 hasConceptScore W4313215904C12267149 @default.
- W4313215904 hasConceptScore W4313215904C153180895 @default.
- W4313215904 hasConceptScore W4313215904C154945302 @default.
- W4313215904 hasConceptScore W4313215904C15744967 @default.
- W4313215904 hasConceptScore W4313215904C169258074 @default.
- W4313215904 hasConceptScore W4313215904C28490314 @default.
- W4313215904 hasConceptScore W4313215904C41008148 @default.
- W4313215904 hasConceptScore W4313215904C47432892 @default.
- W4313215904 hasConceptScore W4313215904C522805319 @default.
- W4313215904 hasConceptScore W4313215904C52622490 @default.
- W4313215904 hasConceptScore W4313215904C83665646 @default.
- W4313215904 hasConceptScore W4313215904C95623464 @default.
- W4313215904 hasFunder F4320311015 @default.
- W4313215904 hasFunder F4320322626 @default.
- W4313215904 hasLocation W43132159041 @default.
- W4313215904 hasOpenAccess W4313215904 @default.
- W4313215904 hasPrimaryLocation W43132159041 @default.
- W4313215904 hasRelatedWork W1546989560 @default.
- W4313215904 hasRelatedWork W1924178503 @default.
- W4313215904 hasRelatedWork W1980222719 @default.
- W4313215904 hasRelatedWork W2889302474 @default.
- W4313215904 hasRelatedWork W3135126032 @default.
- W4313215904 hasRelatedWork W3171520305 @default.
- W4313215904 hasRelatedWork W3193043704 @default.