Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313222275> ?p ?o ?g. }
- W4313222275 abstract "Abstract Asteroids’ and comets’ geodesy is a challenging yet important task for planetary science and spacecraft operations, such as ESA’s Hera mission tasked to look at the aftermath of the recent NASA DART spacecraft’s impact on Dimorphos. Here we present a machine learning approach based on so-called geodesyNets which learns accurate density models of irregular bodies using minimal prior information. geodesyNets are a three-dimensional, differentiable function representing the density of a target irregular body. We investigate six different bodies, including the asteroids Bennu, Eros, and Itokawa and the comet Churyumov-Gerasimenko, and validate on heterogeneous and homogeneous ground-truth density distributions. Induced gravitational accelerations and inferred body shape are accurate, resulting in a relative acceleration error of less than 1%, also close to the surface. With a shape model, geodesyNets can even learn heterogeneous density fields and thus provide insight into the body’s internal structure. This adds a powerful tool to consolidated approaches like spherical harmonics, mascon models, and polyhedral gravity." @default.
- W4313222275 created "2023-01-06" @default.
- W4313222275 creator A5020258120 @default.
- W4313222275 creator A5025317960 @default.
- W4313222275 date "2022-12-28" @default.
- W4313222275 modified "2023-10-05" @default.
- W4313222275 title "Geodesy of irregular small bodies via neural density fields" @default.
- W4313222275 cites W1824882229 @default.
- W4313222275 cites W1964084669 @default.
- W4313222275 cites W1981351218 @default.
- W4313222275 cites W1991469383 @default.
- W4313222275 cites W1992351186 @default.
- W4313222275 cites W2000931351 @default.
- W4313222275 cites W2001742569 @default.
- W4313222275 cites W2007471707 @default.
- W4313222275 cites W2023016915 @default.
- W4313222275 cites W2028449666 @default.
- W4313222275 cites W2037036885 @default.
- W4313222275 cites W2040272379 @default.
- W4313222275 cites W2058963189 @default.
- W4313222275 cites W2073296778 @default.
- W4313222275 cites W2075826913 @default.
- W4313222275 cites W2091449484 @default.
- W4313222275 cites W2092645526 @default.
- W4313222275 cites W2132290614 @default.
- W4313222275 cites W2134219202 @default.
- W4313222275 cites W2175031088 @default.
- W4313222275 cites W2291933988 @default.
- W4313222275 cites W2524635476 @default.
- W4313222275 cites W2554197840 @default.
- W4313222275 cites W2591694678 @default.
- W4313222275 cites W2600752511 @default.
- W4313222275 cites W2625128289 @default.
- W4313222275 cites W2761080207 @default.
- W4313222275 cites W2808492412 @default.
- W4313222275 cites W2907865222 @default.
- W4313222275 cites W2924760942 @default.
- W4313222275 cites W2944544815 @default.
- W4313222275 cites W2952265525 @default.
- W4313222275 cites W2953303320 @default.
- W4313222275 cites W2997100726 @default.
- W4313222275 cites W3006335338 @default.
- W4313222275 cites W3007586521 @default.
- W4313222275 cites W3046462119 @default.
- W4313222275 cites W3092291886 @default.
- W4313222275 cites W3113229535 @default.
- W4313222275 cites W3166352717 @default.
- W4313222275 cites W4200150166 @default.
- W4313222275 cites W4200607578 @default.
- W4313222275 cites W4206991072 @default.
- W4313222275 cites W4214731463 @default.
- W4313222275 cites W4232306508 @default.
- W4313222275 doi "https://doi.org/10.1038/s44172-022-00050-3" @default.
- W4313222275 hasPublicationYear "2022" @default.
- W4313222275 type Work @default.
- W4313222275 citedByCount "2" @default.
- W4313222275 countsByYear W43132222752022 @default.
- W4313222275 crossrefType "journal-article" @default.
- W4313222275 hasAuthorship W4313222275A5020258120 @default.
- W4313222275 hasAuthorship W4313222275A5025317960 @default.
- W4313222275 hasBestOaLocation W43132222751 @default.
- W4313222275 hasConcept C121332964 @default.
- W4313222275 hasConcept C124017977 @default.
- W4313222275 hasConcept C127313418 @default.
- W4313222275 hasConcept C1276947 @default.
- W4313222275 hasConcept C13280743 @default.
- W4313222275 hasConcept C134306372 @default.
- W4313222275 hasConcept C14257148 @default.
- W4313222275 hasConcept C202615002 @default.
- W4313222275 hasConcept C2524010 @default.
- W4313222275 hasConcept C29829512 @default.
- W4313222275 hasConcept C33923547 @default.
- W4313222275 hasConcept C3768446 @default.
- W4313222275 hasConcept C41008148 @default.
- W4313222275 hasConcept C58142911 @default.
- W4313222275 hasConcept C62520636 @default.
- W4313222275 hasConcept C74650414 @default.
- W4313222275 hasConcept C87355193 @default.
- W4313222275 hasConcept C94081185 @default.
- W4313222275 hasConceptScore W4313222275C121332964 @default.
- W4313222275 hasConceptScore W4313222275C124017977 @default.
- W4313222275 hasConceptScore W4313222275C127313418 @default.
- W4313222275 hasConceptScore W4313222275C1276947 @default.
- W4313222275 hasConceptScore W4313222275C13280743 @default.
- W4313222275 hasConceptScore W4313222275C134306372 @default.
- W4313222275 hasConceptScore W4313222275C14257148 @default.
- W4313222275 hasConceptScore W4313222275C202615002 @default.
- W4313222275 hasConceptScore W4313222275C2524010 @default.
- W4313222275 hasConceptScore W4313222275C29829512 @default.
- W4313222275 hasConceptScore W4313222275C33923547 @default.
- W4313222275 hasConceptScore W4313222275C3768446 @default.
- W4313222275 hasConceptScore W4313222275C41008148 @default.
- W4313222275 hasConceptScore W4313222275C58142911 @default.
- W4313222275 hasConceptScore W4313222275C62520636 @default.
- W4313222275 hasConceptScore W4313222275C74650414 @default.
- W4313222275 hasConceptScore W4313222275C87355193 @default.
- W4313222275 hasConceptScore W4313222275C94081185 @default.
- W4313222275 hasIssue "1" @default.
- W4313222275 hasLocation W43132222751 @default.
- W4313222275 hasOpenAccess W4313222275 @default.