Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313223312> ?p ?o ?g. }
- W4313223312 abstract "Abstract Urban Green Infrastructure (UGI) provides ecosystem services such as cooling of temperatures and is majorly important for climate change adaptation. Green Volume (GV) describes the 3-D space occupied by vegetation and is highly useful for the assessment of UGI. This research uses Sentinel-2 (S-2) optical data; vegetation indices (VIs); Sentinel-1 (S-1) and PALSAR-2 (P-2) radar data to build machine learning models for yearly GV estimation on large scales. Our study compares random and stratified sampling of reference data, assesses the performance of different machine learning algorithms and tests model transferability by independent validation. The results indicate that stratified sampling of training data leads to improved accuracies when compared to random sampling. While the Gradient Tree Boost (GTB) and Random Forest (RF) algorithms show generally similar performance, Support Vector Machine (SVM) exhibits considerably greater model error. The results suggest RF to be the most robust classifier overall, achieving highest accuracies for independent and inter-annual validation. Furthermore, modelling GV based on S-2 features considerably outperforms using only S-1 or P-2 based features. Moreover, the study finds that underestimation of large GV magnitudes in urban forests constitutes the biggest source of model error. Overall, modelled GV explains around 79% of the variability in reference GV at 10m resolution and over 90% when aggregated to 100m resolution. The research shows that accurately modelling GV is possible using openly available satellite data. Resulting GV predictions can be useful for environmental management by providing valuable information for climate change adaptation, environmental monitoring and change detection." @default.
- W4313223312 created "2023-01-06" @default.
- W4313223312 creator A5039649559 @default.
- W4313223312 creator A5059804544 @default.
- W4313223312 creator A5088606702 @default.
- W4313223312 date "2022-12-28" @default.
- W4313223312 modified "2023-10-03" @default.
- W4313223312 title "Modelling green volume using Sentinel-1, -2, PALSAR-2 satellite data and machine learning for urban and semi-urban areas in Germany" @default.
- W4313223312 cites W1517337078 @default.
- W4313223312 cites W1974017524 @default.
- W4313223312 cites W1995951585 @default.
- W4313223312 cites W2024664620 @default.
- W4313223312 cites W2041777957 @default.
- W4313223312 cites W2044065363 @default.
- W4313223312 cites W2054054553 @default.
- W4313223312 cites W2058312673 @default.
- W4313223312 cites W2064417027 @default.
- W4313223312 cites W2064593130 @default.
- W4313223312 cites W2091493105 @default.
- W4313223312 cites W2094677081 @default.
- W4313223312 cites W2136280819 @default.
- W4313223312 cites W2150828799 @default.
- W4313223312 cites W2485081146 @default.
- W4313223312 cites W2589611909 @default.
- W4313223312 cites W2604381111 @default.
- W4313223312 cites W2725897987 @default.
- W4313223312 cites W2768035654 @default.
- W4313223312 cites W2786346697 @default.
- W4313223312 cites W2891456868 @default.
- W4313223312 cites W2903885536 @default.
- W4313223312 cites W2911554154 @default.
- W4313223312 cites W2921458013 @default.
- W4313223312 cites W2968347155 @default.
- W4313223312 cites W2969945043 @default.
- W4313223312 cites W30052719 @default.
- W4313223312 cites W3012261509 @default.
- W4313223312 cites W3015545886 @default.
- W4313223312 cites W3035803741 @default.
- W4313223312 cites W3039906290 @default.
- W4313223312 cites W3104656040 @default.
- W4313223312 cites W3110628212 @default.
- W4313223312 cites W3133618126 @default.
- W4313223312 cites W3147631320 @default.
- W4313223312 cites W3160199649 @default.
- W4313223312 cites W3164897503 @default.
- W4313223312 cites W4284963339 @default.
- W4313223312 doi "https://doi.org/10.21203/rs.3.rs-2349291/v1" @default.
- W4313223312 hasPublicationYear "2022" @default.
- W4313223312 type Work @default.
- W4313223312 citedByCount "0" @default.
- W4313223312 crossrefType "posted-content" @default.
- W4313223312 hasAuthorship W4313223312A5039649559 @default.
- W4313223312 hasAuthorship W4313223312A5059804544 @default.
- W4313223312 hasAuthorship W4313223312A5088606702 @default.
- W4313223312 hasBestOaLocation W43132233121 @default.
- W4313223312 hasConcept C105795698 @default.
- W4313223312 hasConcept C106131492 @default.
- W4313223312 hasConcept C119857082 @default.
- W4313223312 hasConcept C12267149 @default.
- W4313223312 hasConcept C124101348 @default.
- W4313223312 hasConcept C127413603 @default.
- W4313223312 hasConcept C140779682 @default.
- W4313223312 hasConcept C146978453 @default.
- W4313223312 hasConcept C154945302 @default.
- W4313223312 hasConcept C169258074 @default.
- W4313223312 hasConcept C19269812 @default.
- W4313223312 hasConcept C205649164 @default.
- W4313223312 hasConcept C31972630 @default.
- W4313223312 hasConcept C33923547 @default.
- W4313223312 hasConcept C39399123 @default.
- W4313223312 hasConcept C39432304 @default.
- W4313223312 hasConcept C41008148 @default.
- W4313223312 hasConcept C49898467 @default.
- W4313223312 hasConcept C62649853 @default.
- W4313223312 hasConceptScore W4313223312C105795698 @default.
- W4313223312 hasConceptScore W4313223312C106131492 @default.
- W4313223312 hasConceptScore W4313223312C119857082 @default.
- W4313223312 hasConceptScore W4313223312C12267149 @default.
- W4313223312 hasConceptScore W4313223312C124101348 @default.
- W4313223312 hasConceptScore W4313223312C127413603 @default.
- W4313223312 hasConceptScore W4313223312C140779682 @default.
- W4313223312 hasConceptScore W4313223312C146978453 @default.
- W4313223312 hasConceptScore W4313223312C154945302 @default.
- W4313223312 hasConceptScore W4313223312C169258074 @default.
- W4313223312 hasConceptScore W4313223312C19269812 @default.
- W4313223312 hasConceptScore W4313223312C205649164 @default.
- W4313223312 hasConceptScore W4313223312C31972630 @default.
- W4313223312 hasConceptScore W4313223312C33923547 @default.
- W4313223312 hasConceptScore W4313223312C39399123 @default.
- W4313223312 hasConceptScore W4313223312C39432304 @default.
- W4313223312 hasConceptScore W4313223312C41008148 @default.
- W4313223312 hasConceptScore W4313223312C49898467 @default.
- W4313223312 hasConceptScore W4313223312C62649853 @default.
- W4313223312 hasLocation W43132233121 @default.
- W4313223312 hasOpenAccess W4313223312 @default.
- W4313223312 hasPrimaryLocation W43132233121 @default.
- W4313223312 hasRelatedWork W1996541855 @default.
- W4313223312 hasRelatedWork W2985924212 @default.
- W4313223312 hasRelatedWork W3195168932 @default.
- W4313223312 hasRelatedWork W3195610867 @default.