Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313225253> ?p ?o ?g. }
- W4313225253 endingPage "49" @default.
- W4313225253 startingPage "49" @default.
- W4313225253 abstract "Remote sensing data provide significant information about surface geological features, but they have not been fully investigated as a tool for delineating mineral prospective targets using the latest advancements in machine learning predictive modeling. In this study, besides available geological data (lithology, structure, lineaments), Landsat-8, Sentinel-2, and ASTER multispectral remote sensing data were processed to produce various predictor maps, which then formed four distinct datasets (namely Landsat-8, Sentinel-2, ASTER, and Data-integration). Remote sensing enhancement techniques, including band ratio (BR), principal component analysis (PCA), and minimum noise fraction (MNF), were applied to produce predictor maps related to hydrothermal alteration zones in Hamissana area, while geological-based predictor maps were derived from applying spatial analysis methods. These four datasets were used independently to train a random forest algorithm (RF), which was then employed to conduct data-driven gold mineral prospectivity modeling (MPM) of the study area and compare the capability of different datasets. The modeling results revealed that ASTER and Sentinel-2 datasets achieved very similar accuracy and outperformed Landsat-8 dataset. Based on the area under the ROC curve (AUC), both datasets had the same prediction accuracy of 0.875. However, ASTER dataset yielded the highest overall classification accuracy of 73%, which is 6% higher than Sentinel-2 and 13% higher than Landsat-8. By using the data-integration concept, the prediction accuracy increased by about 6% (AUC: 0.938) compared with the ASTER dataset. Hence, these results suggest that the framework of exploiting remote sensing data is promising and should be used as an alternative technique for MPM in case of data availability issues." @default.
- W4313225253 created "2023-01-06" @default.
- W4313225253 creator A5006098403 @default.
- W4313225253 creator A5047390606 @default.
- W4313225253 creator A5047940854 @default.
- W4313225253 creator A5065956255 @default.
- W4313225253 creator A5068818477 @default.
- W4313225253 creator A5070695319 @default.
- W4313225253 date "2022-12-28" @default.
- W4313225253 modified "2023-09-26" @default.
- W4313225253 title "Investigating the Capabilities of Various Multispectral Remote Sensors Data to Map Mineral Prospectivity Based on Random Forest Predictive Model: A Case Study for Gold Deposits in Hamissana Area, NE Sudan" @default.
- W4313225253 cites W184020796 @default.
- W4313225253 cites W1973595880 @default.
- W4313225253 cites W1978053173 @default.
- W4313225253 cites W1982998540 @default.
- W4313225253 cites W1983865151 @default.
- W4313225253 cites W1988613889 @default.
- W4313225253 cites W1998115038 @default.
- W4313225253 cites W2018366608 @default.
- W4313225253 cites W2027442956 @default.
- W4313225253 cites W2031282500 @default.
- W4313225253 cites W2031471068 @default.
- W4313225253 cites W2035550432 @default.
- W4313225253 cites W2053125118 @default.
- W4313225253 cites W2057591731 @default.
- W4313225253 cites W2072504176 @default.
- W4313225253 cites W2074506246 @default.
- W4313225253 cites W2077865152 @default.
- W4313225253 cites W2080603146 @default.
- W4313225253 cites W2089482437 @default.
- W4313225253 cites W2109205984 @default.
- W4313225253 cites W2114893924 @default.
- W4313225253 cites W2130121063 @default.
- W4313225253 cites W2140103896 @default.
- W4313225253 cites W2140740764 @default.
- W4313225253 cites W2155632266 @default.
- W4313225253 cites W2155653793 @default.
- W4313225253 cites W2180178176 @default.
- W4313225253 cites W2261059368 @default.
- W4313225253 cites W2337713097 @default.
- W4313225253 cites W2396499624 @default.
- W4313225253 cites W2462769881 @default.
- W4313225253 cites W2526965274 @default.
- W4313225253 cites W2545573415 @default.
- W4313225253 cites W2596308992 @default.
- W4313225253 cites W2597301509 @default.
- W4313225253 cites W2609162588 @default.
- W4313225253 cites W2620774025 @default.
- W4313225253 cites W2622824406 @default.
- W4313225253 cites W2754210971 @default.
- W4313225253 cites W2763734094 @default.
- W4313225253 cites W2783393791 @default.
- W4313225253 cites W2789878394 @default.
- W4313225253 cites W2800585695 @default.
- W4313225253 cites W2802420741 @default.
- W4313225253 cites W2808616529 @default.
- W4313225253 cites W2810838438 @default.
- W4313225253 cites W2884409695 @default.
- W4313225253 cites W2904959160 @default.
- W4313225253 cites W2911964244 @default.
- W4313225253 cites W2914273817 @default.
- W4313225253 cites W2918827223 @default.
- W4313225253 cites W2932813851 @default.
- W4313225253 cites W2935876239 @default.
- W4313225253 cites W2936859456 @default.
- W4313225253 cites W2947319370 @default.
- W4313225253 cites W2948252024 @default.
- W4313225253 cites W2997189074 @default.
- W4313225253 cites W3002325577 @default.
- W4313225253 cites W3009153396 @default.
- W4313225253 cites W3015079338 @default.
- W4313225253 cites W3080936937 @default.
- W4313225253 cites W3089586652 @default.
- W4313225253 cites W3095727264 @default.
- W4313225253 cites W3112560019 @default.
- W4313225253 cites W3114915038 @default.
- W4313225253 cites W3134770645 @default.
- W4313225253 cites W3212553361 @default.
- W4313225253 cites W4205572626 @default.
- W4313225253 cites W4206665214 @default.
- W4313225253 cites W4212883601 @default.
- W4313225253 cites W4281832282 @default.
- W4313225253 cites W4283009311 @default.
- W4313225253 cites W576864993 @default.
- W4313225253 doi "https://doi.org/10.3390/min13010049" @default.
- W4313225253 hasPublicationYear "2022" @default.
- W4313225253 type Work @default.
- W4313225253 citedByCount "6" @default.
- W4313225253 countsByYear W43132252532023 @default.
- W4313225253 crossrefType "journal-article" @default.
- W4313225253 hasAuthorship W4313225253A5006098403 @default.
- W4313225253 hasAuthorship W4313225253A5047390606 @default.
- W4313225253 hasAuthorship W4313225253A5047940854 @default.
- W4313225253 hasAuthorship W4313225253A5065956255 @default.
- W4313225253 hasAuthorship W4313225253A5068818477 @default.
- W4313225253 hasAuthorship W4313225253A5070695319 @default.
- W4313225253 hasBestOaLocation W43132252531 @default.
- W4313225253 hasConcept C109007969 @default.