Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313227057> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313227057 abstract "We give efficient algorithms for finding power-sum decomposition of an input polynomial $P(x)=displaystyle sum_{ileq m}p_{i}(x)^{d}$ with component $p_{i}s$. The case of linear $p_{i}s$ is equivalent to the well-studied tensor decomposition problem while the quadratic case occurs naturally in studying identifiability of non-spherical Gaussian mixtures from low-order moments. Unlike tensor decomposition, both the unique identifiability and algorithms for this problem are not well-understood. For the simplest setting of quadratic $p_{i}s$ and $d=3$, prior work of [11] yields an algorithm only when $mleqoverline{O}(sqrt{n})$. On the other hand, the more general recent result of [13] builds an algebraic approach to handle any $m=n^{O(1)}$ components but only when d is large enough (while yielding no bounds for d=3 or even d=100) and only handles an inverse exponential noise. Our results obtain a substantial quantitative improvement on both the prior works above even in the base case of d=3 and quadratic $p_{i}s$. Specifically, our algorithm succeeds in decomposing a sum of $msimoverline{O}(n)$ generic quadratic $p_{i}s$ for $d=3$ and more generally the dth power-sum of $msim n^{2d/15}$ generic degree-K polynomials for any K$geq$2. Our algorithm relies only on basic numerical linear algebraic primitives, is exact (i.e., obtain arbitrarily tiny error up to numerical precision), and handles an inverse polynomial noise when the $p_{i}s$ have random Gaussian coefficients. Our main tool is a new method for extracting the linear span of $p_{i}s$ by studying the linear subspace of low-order partial derivatives of the input P. For establishing polynomial stability of our algorithm in average-case, we prove inverse polynomial bounds on the smallest singular value of certain correlated random matrices with low-degree polynomial entries that arise in our analyses. Since previous techniques only yield significantly weaker bounds, we analyze the smallest singular value of matrices by studying the largest singular value of certain deviation matrices via graph matrix decomposition and the trace moment method." @default.
- W4313227057 created "2023-01-06" @default.
- W4313227057 creator A5039083557 @default.
- W4313227057 creator A5042066976 @default.
- W4313227057 creator A5068103506 @default.
- W4313227057 creator A5071289810 @default.
- W4313227057 date "2022-10-01" @default.
- W4313227057 modified "2023-09-27" @default.
- W4313227057 title "Polynomial-Time Power-Sum Decomposition of Polynomials" @default.
- W4313227057 cites W1967344706 @default.
- W4313227057 cites W1981651876 @default.
- W4313227057 cites W1989751882 @default.
- W4313227057 cites W2008697571 @default.
- W4313227057 cites W2014565165 @default.
- W4313227057 cites W2026302946 @default.
- W4313227057 cites W2026944800 @default.
- W4313227057 cites W2033154334 @default.
- W4313227057 cites W2047064469 @default.
- W4313227057 cites W2053885701 @default.
- W4313227057 cites W2057214765 @default.
- W4313227057 cites W2057503509 @default.
- W4313227057 cites W2069546133 @default.
- W4313227057 cites W2081131431 @default.
- W4313227057 cites W2106221905 @default.
- W4313227057 cites W2163246442 @default.
- W4313227057 cites W2274757334 @default.
- W4313227057 cites W2943555824 @default.
- W4313227057 cites W2951498306 @default.
- W4313227057 cites W2952469246 @default.
- W4313227057 cites W2962907923 @default.
- W4313227057 cites W2963350742 @default.
- W4313227057 cites W2963538504 @default.
- W4313227057 cites W3021967345 @default.
- W4313227057 cites W3034256405 @default.
- W4313227057 cites W3126881019 @default.
- W4313227057 cites W3206577904 @default.
- W4313227057 cites W4205196152 @default.
- W4313227057 cites W4214847992 @default.
- W4313227057 cites W4293765205 @default.
- W4313227057 doi "https://doi.org/10.1109/focs54457.2022.00094" @default.
- W4313227057 hasPublicationYear "2022" @default.
- W4313227057 type Work @default.
- W4313227057 citedByCount "0" @default.
- W4313227057 crossrefType "proceedings-article" @default.
- W4313227057 hasAuthorship W4313227057A5039083557 @default.
- W4313227057 hasAuthorship W4313227057A5042066976 @default.
- W4313227057 hasAuthorship W4313227057A5068103506 @default.
- W4313227057 hasAuthorship W4313227057A5071289810 @default.
- W4313227057 hasBestOaLocation W43132270572 @default.
- W4313227057 hasConcept C105795698 @default.
- W4313227057 hasConcept C114614502 @default.
- W4313227057 hasConcept C118615104 @default.
- W4313227057 hasConcept C122770356 @default.
- W4313227057 hasConcept C129844170 @default.
- W4313227057 hasConcept C134306372 @default.
- W4313227057 hasConcept C151376022 @default.
- W4313227057 hasConcept C207467116 @default.
- W4313227057 hasConcept C2524010 @default.
- W4313227057 hasConcept C33923547 @default.
- W4313227057 hasConcept C46221946 @default.
- W4313227057 hasConcept C90119067 @default.
- W4313227057 hasConcept C9376300 @default.
- W4313227057 hasConceptScore W4313227057C105795698 @default.
- W4313227057 hasConceptScore W4313227057C114614502 @default.
- W4313227057 hasConceptScore W4313227057C118615104 @default.
- W4313227057 hasConceptScore W4313227057C122770356 @default.
- W4313227057 hasConceptScore W4313227057C129844170 @default.
- W4313227057 hasConceptScore W4313227057C134306372 @default.
- W4313227057 hasConceptScore W4313227057C151376022 @default.
- W4313227057 hasConceptScore W4313227057C207467116 @default.
- W4313227057 hasConceptScore W4313227057C2524010 @default.
- W4313227057 hasConceptScore W4313227057C33923547 @default.
- W4313227057 hasConceptScore W4313227057C46221946 @default.
- W4313227057 hasConceptScore W4313227057C90119067 @default.
- W4313227057 hasConceptScore W4313227057C9376300 @default.
- W4313227057 hasLocation W43132270571 @default.
- W4313227057 hasLocation W43132270572 @default.
- W4313227057 hasOpenAccess W4313227057 @default.
- W4313227057 hasPrimaryLocation W43132270571 @default.
- W4313227057 hasRelatedWork W1489417824 @default.
- W4313227057 hasRelatedWork W1997399992 @default.
- W4313227057 hasRelatedWork W2031810393 @default.
- W4313227057 hasRelatedWork W2094091116 @default.
- W4313227057 hasRelatedWork W2323753230 @default.
- W4313227057 hasRelatedWork W3095999853 @default.
- W4313227057 hasRelatedWork W3120181288 @default.
- W4313227057 hasRelatedWork W4232388855 @default.
- W4313227057 hasRelatedWork W4247525623 @default.
- W4313227057 hasRelatedWork W922655137 @default.
- W4313227057 isParatext "false" @default.
- W4313227057 isRetracted "false" @default.
- W4313227057 workType "article" @default.