Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313227223> ?p ?o ?g. }
Showing items 1 to 86 of
86
with 100 items per page.
- W4313227223 abstract "Nowadays, increasing numbers of malicious programs are becoming a serious problem, which increases the need for automated detection and categorization of potential threats. These attacks often use undetected malware that is not recognized by the security vendor, making it difficult to protect the endpoints from viruses. Existing methods have been proposed to detect malware. However, as malware variations develop, they can lead to misdiagnosis and are difficult to diagnose accurately. To address this problem, in this work introduces a Recurrent Neural Network (RNN) to identify the malware or benign based on extract features using Information Gain Absolute Feature Selection (IGAFS) technique. First, Malware detection dataset is collected from kaggle repository. Then the proposed pre-process the dataset for removing null and noisy values to prepare the dataset. Next, the proposed Information Gain Absolute Feature Selection (IGAFS) technique is used to select most relevant features for malware from the pre-processed dataset. Selected features are trained into Recurrent Neural Network (RNN) method to classify as malware or not with better accuracy and false rate. The experimental result provides greater performance compared with previous methods." @default.
- W4313227223 created "2023-01-06" @default.
- W4313227223 creator A5014824403 @default.
- W4313227223 creator A5035338146 @default.
- W4313227223 creator A5048790479 @default.
- W4313227223 creator A5067888843 @default.
- W4313227223 creator A5068794093 @default.
- W4313227223 creator A5073490115 @default.
- W4313227223 date "2022-10-10" @default.
- W4313227223 modified "2023-10-16" @default.
- W4313227223 title "Malware Detection Classification using Recurrent Neural Network" @default.
- W4313227223 cites W2792450155 @default.
- W4313227223 cites W2885070483 @default.
- W4313227223 cites W2931858311 @default.
- W4313227223 cites W2991680373 @default.
- W4313227223 cites W3023529621 @default.
- W4313227223 cites W3097711322 @default.
- W4313227223 cites W3102758057 @default.
- W4313227223 cites W3104141960 @default.
- W4313227223 cites W3163684853 @default.
- W4313227223 cites W3167041328 @default.
- W4313227223 cites W3176588888 @default.
- W4313227223 cites W3186739895 @default.
- W4313227223 cites W3202733154 @default.
- W4313227223 cites W4205521168 @default.
- W4313227223 cites W4212862390 @default.
- W4313227223 cites W4226299747 @default.
- W4313227223 doi "https://doi.org/10.1109/ictacs56270.2022.9988624" @default.
- W4313227223 hasPublicationYear "2022" @default.
- W4313227223 type Work @default.
- W4313227223 citedByCount "0" @default.
- W4313227223 crossrefType "proceedings-article" @default.
- W4313227223 hasAuthorship W4313227223A5014824403 @default.
- W4313227223 hasAuthorship W4313227223A5035338146 @default.
- W4313227223 hasAuthorship W4313227223A5048790479 @default.
- W4313227223 hasAuthorship W4313227223A5067888843 @default.
- W4313227223 hasAuthorship W4313227223A5068794093 @default.
- W4313227223 hasAuthorship W4313227223A5073490115 @default.
- W4313227223 hasConcept C111919701 @default.
- W4313227223 hasConcept C119857082 @default.
- W4313227223 hasConcept C124101348 @default.
- W4313227223 hasConcept C138885662 @default.
- W4313227223 hasConcept C147168706 @default.
- W4313227223 hasConcept C148483581 @default.
- W4313227223 hasConcept C153180895 @default.
- W4313227223 hasConcept C154945302 @default.
- W4313227223 hasConcept C2776401178 @default.
- W4313227223 hasConcept C38652104 @default.
- W4313227223 hasConcept C41008148 @default.
- W4313227223 hasConcept C41895202 @default.
- W4313227223 hasConcept C50644808 @default.
- W4313227223 hasConcept C541664917 @default.
- W4313227223 hasConcept C81917197 @default.
- W4313227223 hasConcept C98045186 @default.
- W4313227223 hasConceptScore W4313227223C111919701 @default.
- W4313227223 hasConceptScore W4313227223C119857082 @default.
- W4313227223 hasConceptScore W4313227223C124101348 @default.
- W4313227223 hasConceptScore W4313227223C138885662 @default.
- W4313227223 hasConceptScore W4313227223C147168706 @default.
- W4313227223 hasConceptScore W4313227223C148483581 @default.
- W4313227223 hasConceptScore W4313227223C153180895 @default.
- W4313227223 hasConceptScore W4313227223C154945302 @default.
- W4313227223 hasConceptScore W4313227223C2776401178 @default.
- W4313227223 hasConceptScore W4313227223C38652104 @default.
- W4313227223 hasConceptScore W4313227223C41008148 @default.
- W4313227223 hasConceptScore W4313227223C41895202 @default.
- W4313227223 hasConceptScore W4313227223C50644808 @default.
- W4313227223 hasConceptScore W4313227223C541664917 @default.
- W4313227223 hasConceptScore W4313227223C81917197 @default.
- W4313227223 hasConceptScore W4313227223C98045186 @default.
- W4313227223 hasLocation W43132272231 @default.
- W4313227223 hasOpenAccess W4313227223 @default.
- W4313227223 hasPrimaryLocation W43132272231 @default.
- W4313227223 hasRelatedWork W2069496215 @default.
- W4313227223 hasRelatedWork W2739852173 @default.
- W4313227223 hasRelatedWork W3012436885 @default.
- W4313227223 hasRelatedWork W3130682519 @default.
- W4313227223 hasRelatedWork W3210877509 @default.
- W4313227223 hasRelatedWork W3213610575 @default.
- W4313227223 hasRelatedWork W4210605141 @default.
- W4313227223 hasRelatedWork W4212852473 @default.
- W4313227223 hasRelatedWork W4225292389 @default.
- W4313227223 hasRelatedWork W4225360065 @default.
- W4313227223 isParatext "false" @default.
- W4313227223 isRetracted "false" @default.
- W4313227223 workType "article" @default.