Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313229394> ?p ?o ?g. }
- W4313229394 endingPage "1499" @default.
- W4313229394 startingPage "1488" @default.
- W4313229394 abstract "Using neural networks to build a reliable fault detection model is an attractive topic in industrial processes but remains challenging due to the lack of labeled data. We propose a feature learning approach for industrial time-series data based on self-supervised contrastive learning to tackle this challenge. The proposed approach consists of two components: data transformation and representation learning. The data transformation converts the raw time-series to temporal distance matrices capable of storing temporal and spatial information. The representation learning component uses a convolution-based encoder to encode the temporal distance matrices to embedding representations. The encoder is trained using a new constraint called multitimescale feature consistent constraint. Finally, a fault detection framework for the valve stiction detection task is developed based on the feature learning method. The proposed framework is evaluated not only on an industrial benchmark dataset but also on a hardware experimental system and real industrial environments." @default.
- W4313229394 created "2023-01-06" @default.
- W4313229394 creator A5014238712 @default.
- W4313229394 creator A5019570418 @default.
- W4313229394 creator A5061136923 @default.
- W4313229394 creator A5075049394 @default.
- W4313229394 creator A5089032744 @default.
- W4313229394 date "2023-06-01" @default.
- W4313229394 modified "2023-10-14" @default.
- W4313229394 title "Valve Stiction Detection Using Multitimescale Feature Consistent Constraint for Time-Series Data" @default.
- W4313229394 cites W1982156151 @default.
- W4313229394 cites W2042137607 @default.
- W4313229394 cites W2042482310 @default.
- W4313229394 cites W2050493487 @default.
- W4313229394 cites W2059551836 @default.
- W4313229394 cites W2064815992 @default.
- W4313229394 cites W2066575247 @default.
- W4313229394 cites W2068538749 @default.
- W4313229394 cites W2069892322 @default.
- W4313229394 cites W2070178901 @default.
- W4313229394 cites W2070890586 @default.
- W4313229394 cites W2157305913 @default.
- W4313229394 cites W2464418488 @default.
- W4313229394 cites W2477973022 @default.
- W4313229394 cites W2510275336 @default.
- W4313229394 cites W2614049427 @default.
- W4313229394 cites W2734669076 @default.
- W4313229394 cites W2768753204 @default.
- W4313229394 cites W2781978538 @default.
- W4313229394 cites W2943389092 @default.
- W4313229394 cites W2948852829 @default.
- W4313229394 cites W2953990019 @default.
- W4313229394 cites W2955163945 @default.
- W4313229394 cites W2964049638 @default.
- W4313229394 cites W2999516673 @default.
- W4313229394 cites W3001714062 @default.
- W4313229394 cites W3086959365 @default.
- W4313229394 cites W3166805623 @default.
- W4313229394 cites W3174700686 @default.
- W4313229394 cites W3199148273 @default.
- W4313229394 doi "https://doi.org/10.1109/tmech.2022.3227960" @default.
- W4313229394 hasPublicationYear "2023" @default.
- W4313229394 type Work @default.
- W4313229394 citedByCount "0" @default.
- W4313229394 crossrefType "journal-article" @default.
- W4313229394 hasAuthorship W4313229394A5014238712 @default.
- W4313229394 hasAuthorship W4313229394A5019570418 @default.
- W4313229394 hasAuthorship W4313229394A5061136923 @default.
- W4313229394 hasAuthorship W4313229394A5075049394 @default.
- W4313229394 hasAuthorship W4313229394A5089032744 @default.
- W4313229394 hasConcept C101738243 @default.
- W4313229394 hasConcept C104317684 @default.
- W4313229394 hasConcept C108583219 @default.
- W4313229394 hasConcept C111919701 @default.
- W4313229394 hasConcept C118505674 @default.
- W4313229394 hasConcept C119857082 @default.
- W4313229394 hasConcept C127413603 @default.
- W4313229394 hasConcept C13280743 @default.
- W4313229394 hasConcept C138885662 @default.
- W4313229394 hasConcept C151406439 @default.
- W4313229394 hasConcept C152745839 @default.
- W4313229394 hasConcept C153180895 @default.
- W4313229394 hasConcept C154945302 @default.
- W4313229394 hasConcept C172707124 @default.
- W4313229394 hasConcept C17744445 @default.
- W4313229394 hasConcept C185592680 @default.
- W4313229394 hasConcept C185798385 @default.
- W4313229394 hasConcept C199539241 @default.
- W4313229394 hasConcept C204241405 @default.
- W4313229394 hasConcept C205649164 @default.
- W4313229394 hasConcept C27206212 @default.
- W4313229394 hasConcept C2776036281 @default.
- W4313229394 hasConcept C2776359362 @default.
- W4313229394 hasConcept C2776401178 @default.
- W4313229394 hasConcept C2778738651 @default.
- W4313229394 hasConcept C2778924833 @default.
- W4313229394 hasConcept C41008148 @default.
- W4313229394 hasConcept C41895202 @default.
- W4313229394 hasConcept C45347329 @default.
- W4313229394 hasConcept C50644808 @default.
- W4313229394 hasConcept C55493867 @default.
- W4313229394 hasConcept C59404180 @default.
- W4313229394 hasConcept C739882 @default.
- W4313229394 hasConcept C78519656 @default.
- W4313229394 hasConcept C94625758 @default.
- W4313229394 hasConceptScore W4313229394C101738243 @default.
- W4313229394 hasConceptScore W4313229394C104317684 @default.
- W4313229394 hasConceptScore W4313229394C108583219 @default.
- W4313229394 hasConceptScore W4313229394C111919701 @default.
- W4313229394 hasConceptScore W4313229394C118505674 @default.
- W4313229394 hasConceptScore W4313229394C119857082 @default.
- W4313229394 hasConceptScore W4313229394C127413603 @default.
- W4313229394 hasConceptScore W4313229394C13280743 @default.
- W4313229394 hasConceptScore W4313229394C138885662 @default.
- W4313229394 hasConceptScore W4313229394C151406439 @default.
- W4313229394 hasConceptScore W4313229394C152745839 @default.
- W4313229394 hasConceptScore W4313229394C153180895 @default.
- W4313229394 hasConceptScore W4313229394C154945302 @default.