Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313231194> ?p ?o ?g. }
- W4313231194 abstract "Abstract Neuroimaging data is complex and high-dimensional that poses challenges for machine learning (ML) applications. Of varieties of reasons contributing on accuracy decoding, variable feature selection is one of crucial steps for determining target feature in data analysis, especially in the context of neuroimaging studies where the number of features is often much larger than the number of observations. Therefore, optimization of feature selection from such high-dimensional neuroimaging data has been challenging using conventional ML algorithms. Here, we introduce an efficient ML package incorporating a forward variable selection (FVS) algorithm that optimizes the identification of features for both classification and regression models. In our framework, the best ML model and feature pairs that explain the inputs can be automatically determined. Moreover, the toolbox can be executed in a parallel environment for efficient computation. The parallelized FVS algorithm iteratively selects the best feature pair compared against the previous steps to maximize the predictive performance. The FVS algorithm evaluates the goodness-of-fit across different models using the k-fold cross validation and identifies the best subset of features based on a pre-defined criterion for each model. Furthermore, the hyperparameters of each ML model are optimized at each forward iteration. A final outcome highlights an optimized number of selected features (brain regions of interest) with decoding accuracies. Using our pipeline, we examined the effectiveness of our toolbox on an existing neuroimaging (structural MRI) dataset. Compared ML models with and without FVS approach, we demonstrate that the FVS significantly improved the accuracy of the ML algorithm over the counterpart model without FVS. Furthermore, we confirmed the use of parallel computation considerably reduced the computational burden for the high-dimensional MRI data. This oFVSD toolbox efficiently and effectively improves the performance of both classification and regression models on neuroimaging data and should be applicable to many other neuroimaging data and more. This Python package is open-source and freely available, making it a useful toolbox for neuroimaging communities seeking improvement of decoding accuracy for their datasets." @default.
- W4313231194 created "2023-01-06" @default.
- W4313231194 creator A5039776578 @default.
- W4313231194 creator A5040997156 @default.
- W4313231194 creator A5043380578 @default.
- W4313231194 date "2022-12-25" @default.
- W4313231194 modified "2023-10-02" @default.
- W4313231194 title "oFVSD: A Python package of optimized forward variable selection decoder for high-dimensional neuroimaging data" @default.
- W4313231194 cites W1678356000 @default.
- W4313231194 cites W1825157170 @default.
- W4313231194 cites W1975427503 @default.
- W4313231194 cites W1985372952 @default.
- W4313231194 cites W2012059337 @default.
- W4313231194 cites W204885769 @default.
- W4313231194 cites W2056132907 @default.
- W4313231194 cites W2058227600 @default.
- W4313231194 cites W2063757041 @default.
- W4313231194 cites W2063978378 @default.
- W4313231194 cites W2081043253 @default.
- W4313231194 cites W2081295822 @default.
- W4313231194 cites W2103760949 @default.
- W4313231194 cites W2118421222 @default.
- W4313231194 cites W2119004102 @default.
- W4313231194 cites W2119387367 @default.
- W4313231194 cites W2122189635 @default.
- W4313231194 cites W2122825543 @default.
- W4313231194 cites W2130395838 @default.
- W4313231194 cites W2132549764 @default.
- W4313231194 cites W2134585061 @default.
- W4313231194 cites W2143593953 @default.
- W4313231194 cites W2149250260 @default.
- W4313231194 cites W2156665896 @default.
- W4313231194 cites W2158196600 @default.
- W4313231194 cites W2158485497 @default.
- W4313231194 cites W2159580216 @default.
- W4313231194 cites W2167101736 @default.
- W4313231194 cites W2402346616 @default.
- W4313231194 cites W2492294785 @default.
- W4313231194 cites W2498672755 @default.
- W4313231194 cites W2517395172 @default.
- W4313231194 cites W2547725641 @default.
- W4313231194 cites W2761181345 @default.
- W4313231194 cites W2777315026 @default.
- W4313231194 cites W2779962409 @default.
- W4313231194 cites W2787894218 @default.
- W4313231194 cites W2789372206 @default.
- W4313231194 cites W2795659925 @default.
- W4313231194 cites W2883837249 @default.
- W4313231194 cites W2911964244 @default.
- W4313231194 cites W2963390885 @default.
- W4313231194 cites W2977137620 @default.
- W4313231194 cites W3102476541 @default.
- W4313231194 cites W3110310599 @default.
- W4313231194 cites W3111917853 @default.
- W4313231194 cites W4226410059 @default.
- W4313231194 cites W4242607850 @default.
- W4313231194 cites W4247571494 @default.
- W4313231194 cites W4306742555 @default.
- W4313231194 doi "https://doi.org/10.1101/2022.12.25.521906" @default.
- W4313231194 hasPublicationYear "2022" @default.
- W4313231194 type Work @default.
- W4313231194 citedByCount "0" @default.
- W4313231194 crossrefType "posted-content" @default.
- W4313231194 hasAuthorship W4313231194A5039776578 @default.
- W4313231194 hasAuthorship W4313231194A5040997156 @default.
- W4313231194 hasAuthorship W4313231194A5043380578 @default.
- W4313231194 hasBestOaLocation W43132311941 @default.
- W4313231194 hasConcept C111919701 @default.
- W4313231194 hasConcept C11413529 @default.
- W4313231194 hasConcept C118552586 @default.
- W4313231194 hasConcept C119857082 @default.
- W4313231194 hasConcept C124101348 @default.
- W4313231194 hasConcept C138885662 @default.
- W4313231194 hasConcept C148483581 @default.
- W4313231194 hasConcept C151730666 @default.
- W4313231194 hasConcept C153180895 @default.
- W4313231194 hasConcept C154945302 @default.
- W4313231194 hasConcept C15744967 @default.
- W4313231194 hasConcept C199360897 @default.
- W4313231194 hasConcept C2776401178 @default.
- W4313231194 hasConcept C2779343474 @default.
- W4313231194 hasConcept C41008148 @default.
- W4313231194 hasConcept C41895202 @default.
- W4313231194 hasConcept C43521106 @default.
- W4313231194 hasConcept C519991488 @default.
- W4313231194 hasConcept C57273362 @default.
- W4313231194 hasConcept C58693492 @default.
- W4313231194 hasConcept C8642999 @default.
- W4313231194 hasConcept C86803240 @default.
- W4313231194 hasConcept C93959086 @default.
- W4313231194 hasConceptScore W4313231194C111919701 @default.
- W4313231194 hasConceptScore W4313231194C11413529 @default.
- W4313231194 hasConceptScore W4313231194C118552586 @default.
- W4313231194 hasConceptScore W4313231194C119857082 @default.
- W4313231194 hasConceptScore W4313231194C124101348 @default.
- W4313231194 hasConceptScore W4313231194C138885662 @default.
- W4313231194 hasConceptScore W4313231194C148483581 @default.
- W4313231194 hasConceptScore W4313231194C151730666 @default.
- W4313231194 hasConceptScore W4313231194C153180895 @default.
- W4313231194 hasConceptScore W4313231194C154945302 @default.