Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313232249> ?p ?o ?g. }
- W4313232249 endingPage "105" @default.
- W4313232249 startingPage "105" @default.
- W4313232249 abstract "Artificial intelligence (AI), in particular deep learning, has proven to be efficient in medical diagnosis. This paper introduces a new hybrid deep learning model for pneumonia diagnosis based on chest CT scans. At the core of the model, a Gaussian mixture is combined with the expectation-maximization algorithm (EMGMM) to extract the regions of interest (ROI), while a convolutional denoising autoencoder (DAE) and deep restricted Boltzmann machine (DRBM) are combined for the classification. In order to prevent the model from learning trivial solutions, stochastic noises were added as an input to the unsupervised learning phase. The dataset used in this work is a publicly available dataset of chest X-rays for pneumonia on the Kaggle website; it contains 5856 images with 1583 normal cases and 4273 pneumonia cases, with an imbalance ratio (IR) of 0.46. Several operations including zooming, flipping, shifting and rotation were used in the augmentation phase to balance the data distribution across the different classes, which led to enhancing the IR value to 0.028. The computational analysis of the results show that the proposed model is promising as it provides an average accuracy value of 98.63%, sensitivity value of 96.5%, and specificity value of 94.8%." @default.
- W4313232249 created "2023-01-06" @default.
- W4313232249 creator A5001478861 @default.
- W4313232249 creator A5004042791 @default.
- W4313232249 creator A5042388205 @default.
- W4313232249 creator A5051158911 @default.
- W4313232249 date "2022-12-27" @default.
- W4313232249 modified "2023-10-18" @default.
- W4313232249 title "Gaussian Mixture with Max Expectation Guide for Stacked Architecture of Denoising Autoencoder and DRBM for Medical Chest Scans and Disease Identification" @default.
- W4313232249 cites W1964155876 @default.
- W4313232249 cites W2025768430 @default.
- W4313232249 cites W2071709160 @default.
- W4313232249 cites W2076063813 @default.
- W4313232249 cites W2136655611 @default.
- W4313232249 cites W2248620004 @default.
- W4313232249 cites W2321283863 @default.
- W4313232249 cites W2390063609 @default.
- W4313232249 cites W2460529817 @default.
- W4313232249 cites W2608231518 @default.
- W4313232249 cites W2781183410 @default.
- W4313232249 cites W2887196013 @default.
- W4313232249 cites W2924911266 @default.
- W4313232249 cites W2966948188 @default.
- W4313232249 cites W2998957378 @default.
- W4313232249 cites W3014933161 @default.
- W4313232249 cites W3017309755 @default.
- W4313232249 cites W3036881855 @default.
- W4313232249 cites W3040164550 @default.
- W4313232249 cites W3042238554 @default.
- W4313232249 cites W3137710922 @default.
- W4313232249 cites W3142870706 @default.
- W4313232249 cites W3143245897 @default.
- W4313232249 cites W3153405712 @default.
- W4313232249 cites W3197702209 @default.
- W4313232249 cites W3198276338 @default.
- W4313232249 cites W3201554886 @default.
- W4313232249 doi "https://doi.org/10.3390/electronics12010105" @default.
- W4313232249 hasPublicationYear "2022" @default.
- W4313232249 type Work @default.
- W4313232249 citedByCount "0" @default.
- W4313232249 crossrefType "journal-article" @default.
- W4313232249 hasAuthorship W4313232249A5001478861 @default.
- W4313232249 hasAuthorship W4313232249A5004042791 @default.
- W4313232249 hasAuthorship W4313232249A5042388205 @default.
- W4313232249 hasAuthorship W4313232249A5051158911 @default.
- W4313232249 hasBestOaLocation W43132322491 @default.
- W4313232249 hasConcept C101738243 @default.
- W4313232249 hasConcept C105795698 @default.
- W4313232249 hasConcept C108583219 @default.
- W4313232249 hasConcept C116834253 @default.
- W4313232249 hasConcept C126255220 @default.
- W4313232249 hasConcept C153180895 @default.
- W4313232249 hasConcept C154945302 @default.
- W4313232249 hasConcept C163294075 @default.
- W4313232249 hasConcept C182081679 @default.
- W4313232249 hasConcept C2776330181 @default.
- W4313232249 hasConcept C33923547 @default.
- W4313232249 hasConcept C41008148 @default.
- W4313232249 hasConcept C49781872 @default.
- W4313232249 hasConcept C59822182 @default.
- W4313232249 hasConcept C61224824 @default.
- W4313232249 hasConcept C81363708 @default.
- W4313232249 hasConcept C86803240 @default.
- W4313232249 hasConceptScore W4313232249C101738243 @default.
- W4313232249 hasConceptScore W4313232249C105795698 @default.
- W4313232249 hasConceptScore W4313232249C108583219 @default.
- W4313232249 hasConceptScore W4313232249C116834253 @default.
- W4313232249 hasConceptScore W4313232249C126255220 @default.
- W4313232249 hasConceptScore W4313232249C153180895 @default.
- W4313232249 hasConceptScore W4313232249C154945302 @default.
- W4313232249 hasConceptScore W4313232249C163294075 @default.
- W4313232249 hasConceptScore W4313232249C182081679 @default.
- W4313232249 hasConceptScore W4313232249C2776330181 @default.
- W4313232249 hasConceptScore W4313232249C33923547 @default.
- W4313232249 hasConceptScore W4313232249C41008148 @default.
- W4313232249 hasConceptScore W4313232249C49781872 @default.
- W4313232249 hasConceptScore W4313232249C59822182 @default.
- W4313232249 hasConceptScore W4313232249C61224824 @default.
- W4313232249 hasConceptScore W4313232249C81363708 @default.
- W4313232249 hasConceptScore W4313232249C86803240 @default.
- W4313232249 hasFunder F4320322484 @default.
- W4313232249 hasIssue "1" @default.
- W4313232249 hasLocation W43132322491 @default.
- W4313232249 hasOpenAccess W4313232249 @default.
- W4313232249 hasPrimaryLocation W43132322491 @default.
- W4313232249 hasRelatedWork W2669956259 @default.
- W4313232249 hasRelatedWork W2731899572 @default.
- W4313232249 hasRelatedWork W2939353110 @default.
- W4313232249 hasRelatedWork W2998168123 @default.
- W4313232249 hasRelatedWork W3116150086 @default.
- W4313232249 hasRelatedWork W3133861977 @default.
- W4313232249 hasRelatedWork W4200173597 @default.
- W4313232249 hasRelatedWork W4287995534 @default.
- W4313232249 hasRelatedWork W4312417841 @default.
- W4313232249 hasRelatedWork W4321369474 @default.
- W4313232249 hasVolume "12" @default.
- W4313232249 isParatext "false" @default.
- W4313232249 isRetracted "false" @default.