Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313232272> ?p ?o ?g. }
- W4313232272 abstract "Abstract Although an accurate reliability assessment is essential to build a resilient infrastructure, it usually requires time-consuming computation. To reduce the computational burden, machine learning-based surrogate models have been used extensively to predict the probability of failure for structural designs. Nevertheless, the surrogate model still needs to compute and assess a certain number of training samples to achieve sufficient prediction accuracy. This paper proposes a new surrogate method for reliability analysis called Adaptive Hyperball Kriging Reliability Analysis (AHKRA). The AHKRA method revolves around using a hyperball-based sampling region. The radius of the hyperball represents the precision of reliability analysis. It is iteratively adjusted based on the number of samples required to evaluate the probability of failure with a target coefficient of variation. AHKRA adopts samples in a hyperball instead of an n -sigma rule-based sampling region to avoid the curse of dimensionality. The application of AHKRA in ten mathematical and two practical cases verifies its accuracy, efficiency, and robustness as it outperforms previous Kriging-based methods." @default.
- W4313232272 created "2023-01-06" @default.
- W4313232272 creator A5021210300 @default.
- W4313232272 creator A5029814968 @default.
- W4313232272 date "2022-01-01" @default.
- W4313232272 modified "2023-09-27" @default.
- W4313232272 title "Adaptive hyperball Kriging method for efficient reliability analysis" @default.
- W4313232272 cites W1030614780 @default.
- W4313232272 cites W1510052597 @default.
- W4313232272 cites W1609705025 @default.
- W4313232272 cites W1966813174 @default.
- W4313232272 cites W1978031052 @default.
- W4313232272 cites W1981382277 @default.
- W4313232272 cites W1982656778 @default.
- W4313232272 cites W1999091229 @default.
- W4313232272 cites W2000448477 @default.
- W4313232272 cites W2003094496 @default.
- W4313232272 cites W2007535697 @default.
- W4313232272 cites W2010471277 @default.
- W4313232272 cites W2017818133 @default.
- W4313232272 cites W2018345399 @default.
- W4313232272 cites W2031295804 @default.
- W4313232272 cites W2042483271 @default.
- W4313232272 cites W2048470906 @default.
- W4313232272 cites W2056894411 @default.
- W4313232272 cites W2057791914 @default.
- W4313232272 cites W2067829701 @default.
- W4313232272 cites W2077780148 @default.
- W4313232272 cites W2078792326 @default.
- W4313232272 cites W2096285034 @default.
- W4313232272 cites W2097027160 @default.
- W4313232272 cites W2236331705 @default.
- W4313232272 cites W2277932843 @default.
- W4313232272 cites W2345643602 @default.
- W4313232272 cites W2483957145 @default.
- W4313232272 cites W2604982021 @default.
- W4313232272 cites W2605300842 @default.
- W4313232272 cites W2612783399 @default.
- W4313232272 cites W2642384746 @default.
- W4313232272 cites W2731260048 @default.
- W4313232272 cites W2757374624 @default.
- W4313232272 cites W2884013937 @default.
- W4313232272 cites W2908794637 @default.
- W4313232272 cites W2922446902 @default.
- W4313232272 cites W2939254391 @default.
- W4313232272 cites W2944802573 @default.
- W4313232272 cites W2967140494 @default.
- W4313232272 cites W3008280978 @default.
- W4313232272 cites W3010569796 @default.
- W4313232272 cites W3011386366 @default.
- W4313232272 cites W3013846239 @default.
- W4313232272 cites W3025612656 @default.
- W4313232272 cites W3148120894 @default.
- W4313232272 doi "https://doi.org/10.1017/s0890060422000208" @default.
- W4313232272 hasPublicationYear "2022" @default.
- W4313232272 type Work @default.
- W4313232272 citedByCount "0" @default.
- W4313232272 crossrefType "journal-article" @default.
- W4313232272 hasAuthorship W4313232272A5021210300 @default.
- W4313232272 hasAuthorship W4313232272A5029814968 @default.
- W4313232272 hasConcept C104317684 @default.
- W4313232272 hasConcept C105795698 @default.
- W4313232272 hasConcept C106131492 @default.
- W4313232272 hasConcept C111030470 @default.
- W4313232272 hasConcept C11413529 @default.
- W4313232272 hasConcept C119857082 @default.
- W4313232272 hasConcept C121332964 @default.
- W4313232272 hasConcept C124101348 @default.
- W4313232272 hasConcept C127413603 @default.
- W4313232272 hasConcept C131675550 @default.
- W4313232272 hasConcept C140779682 @default.
- W4313232272 hasConcept C163258240 @default.
- W4313232272 hasConcept C185592680 @default.
- W4313232272 hasConcept C19499675 @default.
- W4313232272 hasConcept C200601418 @default.
- W4313232272 hasConcept C2781395549 @default.
- W4313232272 hasConcept C31972630 @default.
- W4313232272 hasConcept C33923547 @default.
- W4313232272 hasConcept C41008148 @default.
- W4313232272 hasConcept C43214815 @default.
- W4313232272 hasConcept C45374587 @default.
- W4313232272 hasConcept C52740198 @default.
- W4313232272 hasConcept C55493867 @default.
- W4313232272 hasConcept C62520636 @default.
- W4313232272 hasConcept C63479239 @default.
- W4313232272 hasConcept C70518039 @default.
- W4313232272 hasConcept C81692654 @default.
- W4313232272 hasConceptScore W4313232272C104317684 @default.
- W4313232272 hasConceptScore W4313232272C105795698 @default.
- W4313232272 hasConceptScore W4313232272C106131492 @default.
- W4313232272 hasConceptScore W4313232272C111030470 @default.
- W4313232272 hasConceptScore W4313232272C11413529 @default.
- W4313232272 hasConceptScore W4313232272C119857082 @default.
- W4313232272 hasConceptScore W4313232272C121332964 @default.
- W4313232272 hasConceptScore W4313232272C124101348 @default.
- W4313232272 hasConceptScore W4313232272C127413603 @default.
- W4313232272 hasConceptScore W4313232272C131675550 @default.
- W4313232272 hasConceptScore W4313232272C140779682 @default.
- W4313232272 hasConceptScore W4313232272C163258240 @default.
- W4313232272 hasConceptScore W4313232272C185592680 @default.