Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313232294> ?p ?o ?g. }
- W4313232294 endingPage "84" @default.
- W4313232294 startingPage "84" @default.
- W4313232294 abstract "This study aimed to compare the performance of two deep learning algorithms, attention-based gated recurrent unit (GRU), and the artificial neural networks (ANNs) algorithm for coloring silicone maxillofacial prostheses.This was an in vitro study.A total of 21 silicone samples in different colors were produced with four pigments (white, yellow, red, and blue). The color of the samples was measured with a spectrophotometer, then the LFNx01, aFNx01, and bFNx01 values were recorded. The relationship between the LFNx01, aFNx01, and bFNx01 values of each sample and the amount of each pigment in the compound of the same sample was used as the training dataset, entered into each algorithm, and the prediction models were obtained. While generating the prediction model for each sample, the data of the corresponding sample assigned as the target color were excluded. LFNx01, aFNx01, and bFNx01 values of each target sample were entered into the obtained models separately, and recipes indicating the ratios for mixing the four pigments were predicted. The mean absolute error (MAE) and root mean square error (RMSE) values between the original recipe used in the production of each silicone and the recipe created by both prediction models for the same silicone were calculated.Data were analyzed with the Student t-test (α=0.05).The mean RMSE values and MAE values for the ANN algorithm (0.029 ± 0.0152 and 0.045 ± 0.0235, respectively) were found significantly higher than the attention-based GRU model (0.001 ± 0.0005 and 0.002 ± 0.0008, respectively) (P < 0.001).Attention-based GRU model provided better performance than the ANN algorithm with respect to the MAE and RMSE values." @default.
- W4313232294 created "2023-01-06" @default.
- W4313232294 creator A5046578097 @default.
- W4313232294 creator A5048012509 @default.
- W4313232294 creator A5055731576 @default.
- W4313232294 date "2023-01-01" @default.
- W4313232294 modified "2023-10-13" @default.
- W4313232294 title "Using deep learning approaches for coloring silicone maxillofacial prostheses: A comparison of two approaches" @default.
- W4313232294 cites W1606687573 @default.
- W4313232294 cites W1975054701 @default.
- W4313232294 cites W1978152479 @default.
- W4313232294 cites W1981976602 @default.
- W4313232294 cites W1996020380 @default.
- W4313232294 cites W2010680143 @default.
- W4313232294 cites W2011348289 @default.
- W4313232294 cites W2011533104 @default.
- W4313232294 cites W2038534872 @default.
- W4313232294 cites W2064675550 @default.
- W4313232294 cites W2085576949 @default.
- W4313232294 cites W2102148524 @default.
- W4313232294 cites W2107878631 @default.
- W4313232294 cites W2109968277 @default.
- W4313232294 cites W2117951582 @default.
- W4313232294 cites W2125848133 @default.
- W4313232294 cites W2143950899 @default.
- W4313232294 cites W2575125657 @default.
- W4313232294 cites W2766736793 @default.
- W4313232294 cites W2768552973 @default.
- W4313232294 cites W2787733121 @default.
- W4313232294 cites W2791208468 @default.
- W4313232294 cites W2799952019 @default.
- W4313232294 cites W2884676668 @default.
- W4313232294 cites W2906113004 @default.
- W4313232294 cites W2973659729 @default.
- W4313232294 cites W3043386733 @default.
- W4313232294 cites W3046296398 @default.
- W4313232294 cites W3101667008 @default.
- W4313232294 cites W3133278425 @default.
- W4313232294 cites W3135347016 @default.
- W4313232294 cites W3212071841 @default.
- W4313232294 cites W3214840804 @default.
- W4313232294 doi "https://doi.org/10.4103/jips.jips_149_22" @default.
- W4313232294 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36588380" @default.
- W4313232294 hasPublicationYear "2023" @default.
- W4313232294 type Work @default.
- W4313232294 citedByCount "2" @default.
- W4313232294 countsByYear W43132322942023 @default.
- W4313232294 crossrefType "journal-article" @default.
- W4313232294 hasAuthorship W4313232294A5046578097 @default.
- W4313232294 hasAuthorship W4313232294A5048012509 @default.
- W4313232294 hasAuthorship W4313232294A5055731576 @default.
- W4313232294 hasBestOaLocation W43132322941 @default.
- W4313232294 hasConcept C105795698 @default.
- W4313232294 hasConcept C11413529 @default.
- W4313232294 hasConcept C139945424 @default.
- W4313232294 hasConcept C154945302 @default.
- W4313232294 hasConcept C159985019 @default.
- W4313232294 hasConcept C167085575 @default.
- W4313232294 hasConcept C185592680 @default.
- W4313232294 hasConcept C188154048 @default.
- W4313232294 hasConcept C192562407 @default.
- W4313232294 hasConcept C198531522 @default.
- W4313232294 hasConcept C2778671685 @default.
- W4313232294 hasConcept C2779769944 @default.
- W4313232294 hasConcept C31903555 @default.
- W4313232294 hasConcept C33923547 @default.
- W4313232294 hasConcept C41008148 @default.
- W4313232294 hasConcept C43617362 @default.
- W4313232294 hasConcept C50644808 @default.
- W4313232294 hasConceptScore W4313232294C105795698 @default.
- W4313232294 hasConceptScore W4313232294C11413529 @default.
- W4313232294 hasConceptScore W4313232294C139945424 @default.
- W4313232294 hasConceptScore W4313232294C154945302 @default.
- W4313232294 hasConceptScore W4313232294C159985019 @default.
- W4313232294 hasConceptScore W4313232294C167085575 @default.
- W4313232294 hasConceptScore W4313232294C185592680 @default.
- W4313232294 hasConceptScore W4313232294C188154048 @default.
- W4313232294 hasConceptScore W4313232294C192562407 @default.
- W4313232294 hasConceptScore W4313232294C198531522 @default.
- W4313232294 hasConceptScore W4313232294C2778671685 @default.
- W4313232294 hasConceptScore W4313232294C2779769944 @default.
- W4313232294 hasConceptScore W4313232294C31903555 @default.
- W4313232294 hasConceptScore W4313232294C33923547 @default.
- W4313232294 hasConceptScore W4313232294C41008148 @default.
- W4313232294 hasConceptScore W4313232294C43617362 @default.
- W4313232294 hasConceptScore W4313232294C50644808 @default.
- W4313232294 hasIssue "1" @default.
- W4313232294 hasLocation W43132322941 @default.
- W4313232294 hasLocation W43132322942 @default.
- W4313232294 hasOpenAccess W4313232294 @default.
- W4313232294 hasPrimaryLocation W43132322941 @default.
- W4313232294 hasRelatedWork W2031738253 @default.
- W4313232294 hasRelatedWork W2099878889 @default.
- W4313232294 hasRelatedWork W2188032833 @default.
- W4313232294 hasRelatedWork W2625413331 @default.
- W4313232294 hasRelatedWork W2767026677 @default.
- W4313232294 hasRelatedWork W2807954395 @default.
- W4313232294 hasRelatedWork W2967771611 @default.