Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313233091> ?p ?o ?g. }
- W4313233091 endingPage "3994" @default.
- W4313233091 startingPage "3984" @default.
- W4313233091 abstract "To construct effective prediction models for neoadjuvant radiotherapy (RT) and targeted therapy based on whole-tumor texture analysis of multisequence MRI for soft tissue sarcoma (STS) patients.Thirty patients with STS of the extremities or trunk from a prospective phase II trial were enrolled for this analysis. All patients underwent pre- and post-neoadjuvant RT MRI examinations from which whole-tumor texture features were extracted, including T1-weighted with fat saturation and contrast enhancement (T1FSGd), T2-weighted with fat saturation (T2FS), and diffusion-weighted imaging (DWI) sequences and their corresponding apparent diffusion coefficient (ADC) maps. According to the postoperative pathological results, the patients were divided into pathological complete response (pCR) and non-pCR (N-pCR) groups. pCR was defined as less than 5% of residual tumor cells by postoperative pathology. Delta features were defined as the percentage change in a texture feature from pre- to post-neoadjuvant RT MRI. After data reduction and feature selection, logistic regression was used to build prediction models. ROC analysis was performed to assess the diagnostic performance.Five of 30 patients (16.7%) achieved pCR. The Delta_Model (AUC 0.92) had a better predictive ability than the Pre_Model (AUC 0.78) and Post_Model (AUC 0.76) and was better than AJCC staging (AUC 0.52) and RECIST 1.1 criteria (AUC 0.52). The Combined_Model (pre, post, and delta features) had the best predictive performance (AUC 0.95).Whole-tumor texture analysis of multisequence MRI can well predict pCR status after neoadjuvant RT and targeted therapy in STS patients, with better performance than RECIST 1.1 and AJCC staging.• MRI multisequence texture analysis could predict the efficacy of neoadjuvant RT and targeted therapy for STS patients. • Texture features showed incremental value beyond routine clinical factors. • The Combined_Model with features at multiple time points showed the best performance." @default.
- W4313233091 created "2023-01-06" @default.
- W4313233091 creator A5003964046 @default.
- W4313233091 creator A5015075983 @default.
- W4313233091 creator A5015732550 @default.
- W4313233091 creator A5018142187 @default.
- W4313233091 creator A5034459531 @default.
- W4313233091 creator A5056842639 @default.
- W4313233091 creator A5058000851 @default.
- W4313233091 creator A5061434488 @default.
- W4313233091 creator A5061735519 @default.
- W4313233091 creator A5062284421 @default.
- W4313233091 creator A5074622138 @default.
- W4313233091 creator A5084229837 @default.
- W4313233091 creator A5086529505 @default.
- W4313233091 creator A5087592842 @default.
- W4313233091 date "2022-12-29" @default.
- W4313233091 modified "2023-10-05" @default.
- W4313233091 title "Predicting pathological complete response of neoadjuvant radiotherapy and targeted therapy for soft tissue sarcoma by whole-tumor texture analysis of multisequence MRI imaging" @default.
- W4313233091 cites W1968045230 @default.
- W4313233091 cites W2018939183 @default.
- W4313233091 cites W2059930718 @default.
- W4313233091 cites W2091601272 @default.
- W4313233091 cites W2097475056 @default.
- W4313233091 cites W2099698084 @default.
- W4313233091 cites W2100457375 @default.
- W4313233091 cites W2101776780 @default.
- W4313233091 cites W2119659417 @default.
- W4313233091 cites W2123534406 @default.
- W4313233091 cites W2148064549 @default.
- W4313233091 cites W2153477869 @default.
- W4313233091 cites W2166339706 @default.
- W4313233091 cites W2219677070 @default.
- W4313233091 cites W2564174616 @default.
- W4313233091 cites W2612570481 @default.
- W4313233091 cites W2735852190 @default.
- W4313233091 cites W2766014285 @default.
- W4313233091 cites W2803396907 @default.
- W4313233091 cites W2808043936 @default.
- W4313233091 cites W2887903653 @default.
- W4313233091 cites W2905890314 @default.
- W4313233091 cites W2961319233 @default.
- W4313233091 cites W2971607482 @default.
- W4313233091 cites W2998789541 @default.
- W4313233091 cites W3007523255 @default.
- W4313233091 cites W3036061820 @default.
- W4313233091 cites W3112333362 @default.
- W4313233091 cites W3112448992 @default.
- W4313233091 cites W3135158214 @default.
- W4313233091 cites W3156202448 @default.
- W4313233091 cites W3196582427 @default.
- W4313233091 cites W4205644504 @default.
- W4313233091 doi "https://doi.org/10.1007/s00330-022-09362-6" @default.
- W4313233091 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36580095" @default.
- W4313233091 hasPublicationYear "2022" @default.
- W4313233091 type Work @default.
- W4313233091 citedByCount "14" @default.
- W4313233091 countsByYear W43132330912022 @default.
- W4313233091 countsByYear W43132330912023 @default.
- W4313233091 crossrefType "journal-article" @default.
- W4313233091 hasAuthorship W4313233091A5003964046 @default.
- W4313233091 hasAuthorship W4313233091A5015075983 @default.
- W4313233091 hasAuthorship W4313233091A5015732550 @default.
- W4313233091 hasAuthorship W4313233091A5018142187 @default.
- W4313233091 hasAuthorship W4313233091A5034459531 @default.
- W4313233091 hasAuthorship W4313233091A5056842639 @default.
- W4313233091 hasAuthorship W4313233091A5058000851 @default.
- W4313233091 hasAuthorship W4313233091A5061434488 @default.
- W4313233091 hasAuthorship W4313233091A5061735519 @default.
- W4313233091 hasAuthorship W4313233091A5062284421 @default.
- W4313233091 hasAuthorship W4313233091A5074622138 @default.
- W4313233091 hasAuthorship W4313233091A5084229837 @default.
- W4313233091 hasAuthorship W4313233091A5086529505 @default.
- W4313233091 hasAuthorship W4313233091A5087592842 @default.
- W4313233091 hasBestOaLocation W43132330911 @default.
- W4313233091 hasConcept C121608353 @default.
- W4313233091 hasConcept C126322002 @default.
- W4313233091 hasConcept C126838900 @default.
- W4313233091 hasConcept C142724271 @default.
- W4313233091 hasConcept C143409427 @default.
- W4313233091 hasConcept C149550507 @default.
- W4313233091 hasConcept C207886595 @default.
- W4313233091 hasConcept C2778256501 @default.
- W4313233091 hasConcept C2778292576 @default.
- W4313233091 hasConcept C2989005 @default.
- W4313233091 hasConcept C509974204 @default.
- W4313233091 hasConcept C530470458 @default.
- W4313233091 hasConcept C58471807 @default.
- W4313233091 hasConcept C70816921 @default.
- W4313233091 hasConcept C71924100 @default.
- W4313233091 hasConcept C76318530 @default.
- W4313233091 hasConceptScore W4313233091C121608353 @default.
- W4313233091 hasConceptScore W4313233091C126322002 @default.
- W4313233091 hasConceptScore W4313233091C126838900 @default.
- W4313233091 hasConceptScore W4313233091C142724271 @default.
- W4313233091 hasConceptScore W4313233091C143409427 @default.
- W4313233091 hasConceptScore W4313233091C149550507 @default.
- W4313233091 hasConceptScore W4313233091C207886595 @default.