Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313234015> ?p ?o ?g. }
- W4313234015 abstract "Abstract Ultrasonography is one of the key medical imaging modalities for evaluating breast lesions. For differentiating benign from malignant lesions, computer‐aided diagnosis (CAD) systems have greatly assisted radiologists by automatically segmenting and identifying features of lesions. Here, we present deep learning (DL)‐based methods to segment the lesions and then classify benign from malignant, utilizing both B‐mode and strain elastography (SE‐mode) images. We propose a weighted multimodal U‐Net (W‐MM‐U‐Net) model for segmenting lesions where optimum weight is assigned on different imaging modalities using a weighted‐skip connection method to emphasize its importance. We design a multimodal fusion framework (MFF) on cropped B‐mode and SE‐mode ultrasound (US) lesion images to classify benign and malignant lesions. The MFF consists of an integrated feature network (IFN) and a decision network (DN). Unlike other recent fusion methods, the proposed MFF method can simultaneously learn complementary information from convolutional neural networks (CNNs) trained using B‐mode and SE‐mode US images. The features from the CNNs are ensembled using the multimodal EmbraceNet model and DN classifies the images using those features. The experimental results (sensitivity of 100 ± 0.00% and specificity of 94.28 ± 7.00%) on the real‐world clinical data showed that the proposed method outperforms the existing single‐ and multimodal methods. The proposed method predicts seven benign patients as benign three times out of five trials and six malignant patients as malignant five out of five trials. The proposed method would potentially enhance the classification accuracy of radiologists for breast cancer detection in US images." @default.
- W4313234015 created "2023-01-06" @default.
- W4313234015 creator A5005897222 @default.
- W4313234015 creator A5009744015 @default.
- W4313234015 creator A5019687855 @default.
- W4313234015 creator A5023387883 @default.
- W4313234015 creator A5051621245 @default.
- W4313234015 creator A5060976816 @default.
- W4313234015 creator A5091718941 @default.
- W4313234015 date "2022-12-28" @default.
- W4313234015 modified "2023-10-15" @default.
- W4313234015 title "Deep learning‐based multimodal fusion network for segmentation and classification of breast cancers using B‐mode and elastography ultrasound images" @default.
- W4313234015 cites W1901129140 @default.
- W4313234015 cites W2028672930 @default.
- W4313234015 cites W2046887523 @default.
- W4313234015 cites W2052984131 @default.
- W4313234015 cites W2083255256 @default.
- W4313234015 cites W2105184687 @default.
- W4313234015 cites W2121045353 @default.
- W4313234015 cites W2150302563 @default.
- W4313234015 cites W2183659962 @default.
- W4313234015 cites W2194775991 @default.
- W4313234015 cites W2270470215 @default.
- W4313234015 cites W2281375744 @default.
- W4313234015 cites W2559785631 @default.
- W4313234015 cites W2563031223 @default.
- W4313234015 cites W2744692634 @default.
- W4313234015 cites W2765288370 @default.
- W4313234015 cites W2766788829 @default.
- W4313234015 cites W2791125534 @default.
- W4313234015 cites W2902439519 @default.
- W4313234015 cites W2907171276 @default.
- W4313234015 cites W2963446712 @default.
- W4313234015 cites W2963730812 @default.
- W4313234015 cites W2964227007 @default.
- W4313234015 cites W2994948129 @default.
- W4313234015 cites W2995646717 @default.
- W4313234015 cites W3005476017 @default.
- W4313234015 cites W3027383590 @default.
- W4313234015 cites W3033243763 @default.
- W4313234015 cites W3082003320 @default.
- W4313234015 cites W3082486338 @default.
- W4313234015 cites W3096947210 @default.
- W4313234015 cites W3099861653 @default.
- W4313234015 cites W3105354225 @default.
- W4313234015 cites W3112139896 @default.
- W4313234015 cites W3128235422 @default.
- W4313234015 cites W3131390313 @default.
- W4313234015 cites W3135379929 @default.
- W4313234015 cites W3173890719 @default.
- W4313234015 cites W3206737537 @default.
- W4313234015 cites W4250664506 @default.
- W4313234015 doi "https://doi.org/10.1002/btm2.10480" @default.
- W4313234015 hasPublicationYear "2022" @default.
- W4313234015 type Work @default.
- W4313234015 citedByCount "0" @default.
- W4313234015 crossrefType "journal-article" @default.
- W4313234015 hasAuthorship W4313234015A5005897222 @default.
- W4313234015 hasAuthorship W4313234015A5009744015 @default.
- W4313234015 hasAuthorship W4313234015A5019687855 @default.
- W4313234015 hasAuthorship W4313234015A5023387883 @default.
- W4313234015 hasAuthorship W4313234015A5051621245 @default.
- W4313234015 hasAuthorship W4313234015A5060976816 @default.
- W4313234015 hasAuthorship W4313234015A5091718941 @default.
- W4313234015 hasBestOaLocation W43132340151 @default.
- W4313234015 hasConcept C108583219 @default.
- W4313234015 hasConcept C121608353 @default.
- W4313234015 hasConcept C126322002 @default.
- W4313234015 hasConcept C126838900 @default.
- W4313234015 hasConcept C138885662 @default.
- W4313234015 hasConcept C143753070 @default.
- W4313234015 hasConcept C153180895 @default.
- W4313234015 hasConcept C154945302 @default.
- W4313234015 hasConcept C2776401178 @default.
- W4313234015 hasConcept C2777690781 @default.
- W4313234015 hasConcept C2779098232 @default.
- W4313234015 hasConcept C2780226545 @default.
- W4313234015 hasConcept C2780472235 @default.
- W4313234015 hasConcept C41008148 @default.
- W4313234015 hasConcept C41895202 @default.
- W4313234015 hasConcept C50644808 @default.
- W4313234015 hasConcept C530470458 @default.
- W4313234015 hasConcept C71924100 @default.
- W4313234015 hasConcept C81363708 @default.
- W4313234015 hasConcept C89600930 @default.
- W4313234015 hasConceptScore W4313234015C108583219 @default.
- W4313234015 hasConceptScore W4313234015C121608353 @default.
- W4313234015 hasConceptScore W4313234015C126322002 @default.
- W4313234015 hasConceptScore W4313234015C126838900 @default.
- W4313234015 hasConceptScore W4313234015C138885662 @default.
- W4313234015 hasConceptScore W4313234015C143753070 @default.
- W4313234015 hasConceptScore W4313234015C153180895 @default.
- W4313234015 hasConceptScore W4313234015C154945302 @default.
- W4313234015 hasConceptScore W4313234015C2776401178 @default.
- W4313234015 hasConceptScore W4313234015C2777690781 @default.
- W4313234015 hasConceptScore W4313234015C2779098232 @default.
- W4313234015 hasConceptScore W4313234015C2780226545 @default.
- W4313234015 hasConceptScore W4313234015C2780472235 @default.
- W4313234015 hasConceptScore W4313234015C41008148 @default.
- W4313234015 hasConceptScore W4313234015C41895202 @default.