Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313236716> ?p ?o ?g. }
- W4313236716 endingPage "3199" @default.
- W4313236716 startingPage "3188" @default.
- W4313236716 abstract "Abstract Objectives The aim is to validate the performance of a deep convolutional neural network (DCNN) for vertebral body measurements and insufficiency fracture detection on lumbar spine MRI. Methods This retrospective analysis included 1000 vertebral bodies in 200 patients (age 75.2 ± 9.8 years) who underwent lumbar spine MRI at multiple institutions. 160/200 patients had ≥ one vertebral body insufficiency fracture, 40/200 had no fracture. The performance of the DCNN and that of two fellowship-trained musculoskeletal radiologists in vertebral body measurements (anterior/posterior height, extent of endplate concavity, vertebral angle) and evaluation for insufficiency fractures were compared. Statistics included (a) interobserver reliability metrics using intraclass correlation coefficient (ICC), kappa statistics, and Bland-Altman analysis, and (b) diagnostic performance metrics (sensitivity, specificity, accuracy). A statistically significant difference was accepted if the 95% confidence intervals did not overlap. Results The inter-reader agreement between radiologists and the DCNN was excellent for vertebral body measurements, with ICC values of > 0.94 for anterior and posterior vertebral height and vertebral angle, and good to excellent for superior and inferior endplate concavity with ICC values of 0.79–0.85. The performance of the DCNN in fracture detection yielded a sensitivity of 0.941 (0.903–0.968), specificity of 0.969 (0.954–0.980), and accuracy of 0.962 (0.948–0.973). The diagnostic performance of the DCNN was independent of the radiological institution (accuracy 0.964 vs. 0.960), type of MRI scanner (accuracy 0.957 vs. 0.964), and magnetic field strength (accuracy 0.966 vs. 0.957). Conclusions A DCNN can achieve high diagnostic performance in vertebral body measurements and insufficiency fracture detection on heterogeneous lumbar spine MRI. Key Points • A DCNN has the potential for high diagnostic performance in measuring vertebral bodies and detecting insufficiency fractures of the lumbar spine." @default.
- W4313236716 created "2023-01-06" @default.
- W4313236716 creator A5017552908 @default.
- W4313236716 creator A5036270092 @default.
- W4313236716 creator A5040546832 @default.
- W4313236716 creator A5044446110 @default.
- W4313236716 creator A5067467646 @default.
- W4313236716 date "2022-12-28" @default.
- W4313236716 modified "2023-10-06" @default.
- W4313236716 title "Performance of a deep convolutional neural network for MRI-based vertebral body measurements and insufficiency fracture detection" @default.
- W4313236716 cites W18924068 @default.
- W4313236716 cites W2015795623 @default.
- W4313236716 cites W2041474803 @default.
- W4313236716 cites W2044178924 @default.
- W4313236716 cites W2164777277 @default.
- W4313236716 cites W2327037637 @default.
- W4313236716 cites W2596649969 @default.
- W4313236716 cites W2737373222 @default.
- W4313236716 cites W2766766852 @default.
- W4313236716 cites W2792040912 @default.
- W4313236716 cites W2803328900 @default.
- W4313236716 cites W2811095288 @default.
- W4313236716 cites W2885303411 @default.
- W4313236716 cites W2886172736 @default.
- W4313236716 cites W2902874468 @default.
- W4313236716 cites W2925189575 @default.
- W4313236716 cites W2935090763 @default.
- W4313236716 cites W2944443236 @default.
- W4313236716 cites W2944480979 @default.
- W4313236716 cites W2948196832 @default.
- W4313236716 cites W2964879006 @default.
- W4313236716 cites W2967618867 @default.
- W4313236716 cites W2972547942 @default.
- W4313236716 cites W2988912012 @default.
- W4313236716 cites W2990070310 @default.
- W4313236716 cites W3011285237 @default.
- W4313236716 cites W3011530750 @default.
- W4313236716 cites W3109092658 @default.
- W4313236716 cites W3116871521 @default.
- W4313236716 cites W3134978958 @default.
- W4313236716 cites W3138314157 @default.
- W4313236716 cites W3170429131 @default.
- W4313236716 cites W317462034 @default.
- W4313236716 cites W3188953554 @default.
- W4313236716 cites W3196027324 @default.
- W4313236716 cites W3196906371 @default.
- W4313236716 cites W3199950729 @default.
- W4313236716 cites W3211935343 @default.
- W4313236716 cites W4200013359 @default.
- W4313236716 cites W4200533043 @default.
- W4313236716 cites W4210432062 @default.
- W4313236716 cites W4284893063 @default.
- W4313236716 cites W4285719527 @default.
- W4313236716 doi "https://doi.org/10.1007/s00330-022-09354-6" @default.
- W4313236716 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36576545" @default.
- W4313236716 hasPublicationYear "2022" @default.
- W4313236716 type Work @default.
- W4313236716 citedByCount "0" @default.
- W4313236716 crossrefType "journal-article" @default.
- W4313236716 hasAuthorship W4313236716A5017552908 @default.
- W4313236716 hasAuthorship W4313236716A5036270092 @default.
- W4313236716 hasAuthorship W4313236716A5040546832 @default.
- W4313236716 hasAuthorship W4313236716A5044446110 @default.
- W4313236716 hasAuthorship W4313236716A5067467646 @default.
- W4313236716 hasBestOaLocation W43132367161 @default.
- W4313236716 hasConcept C104709138 @default.
- W4313236716 hasConcept C105795698 @default.
- W4313236716 hasConcept C118552586 @default.
- W4313236716 hasConcept C126838900 @default.
- W4313236716 hasConcept C141071460 @default.
- W4313236716 hasConcept C143409427 @default.
- W4313236716 hasConcept C163864269 @default.
- W4313236716 hasConcept C16568411 @default.
- W4313236716 hasConcept C171606756 @default.
- W4313236716 hasConcept C190892606 @default.
- W4313236716 hasConcept C2779835254 @default.
- W4313236716 hasConcept C2779889316 @default.
- W4313236716 hasConcept C2780913275 @default.
- W4313236716 hasConcept C2989005 @default.
- W4313236716 hasConcept C2993730151 @default.
- W4313236716 hasConcept C33923547 @default.
- W4313236716 hasConcept C44575665 @default.
- W4313236716 hasConcept C513090587 @default.
- W4313236716 hasConcept C70410870 @default.
- W4313236716 hasConcept C71924100 @default.
- W4313236716 hasConceptScore W4313236716C104709138 @default.
- W4313236716 hasConceptScore W4313236716C105795698 @default.
- W4313236716 hasConceptScore W4313236716C118552586 @default.
- W4313236716 hasConceptScore W4313236716C126838900 @default.
- W4313236716 hasConceptScore W4313236716C141071460 @default.
- W4313236716 hasConceptScore W4313236716C143409427 @default.
- W4313236716 hasConceptScore W4313236716C163864269 @default.
- W4313236716 hasConceptScore W4313236716C16568411 @default.
- W4313236716 hasConceptScore W4313236716C171606756 @default.
- W4313236716 hasConceptScore W4313236716C190892606 @default.
- W4313236716 hasConceptScore W4313236716C2779835254 @default.
- W4313236716 hasConceptScore W4313236716C2779889316 @default.
- W4313236716 hasConceptScore W4313236716C2780913275 @default.