Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313236720> ?p ?o ?g. }
- W4313236720 endingPage "161157" @default.
- W4313236720 startingPage "161157" @default.
- W4313236720 abstract "Nitrogen oxides (NOx ≡ NO + NO2) play a central role in air pollution and are targeted for emission mitigation by environmental protection agencies globally. Unique challenges for mitigation are presented by super-emitters, typically with the potential to dominate localized NOx budgets. Nevertheless, identifying super-emitters still challenges emission mitigation, while the spatial resolution of emission monitoring rises continuously. Here we develop an efficient, super-resolution (1 × 1 km2) inverse model based on year-round TROPOMI satellite observations over China. Consequently, we resolve hundreds of super-emitters in virtually every corner of China, even in remote and mountainous areas. They are attributed to individual plants or parks, mostly associated with industrial sectors, like energy, petrochemical, and iron and steel industries. State-of-the-art bottom-up emission estimates (i.e., MEICv1.3 and HTAPv2), as well as classic top-down inverse methods (e.g., a CTM coupled with the Ensemble Kalman Filter), do not adequately identify these super-emitters. Remarkably, more than one hundred super-emitters are unambiguously missed, while the establishments or discontinuations of the super-emitters potentially lead to under- or over-estimates, respectively. Moreover, evidence shows that these super-emitters generally dominate the NOx budget in a localized area (e.g., equivalent to a spatial scale of a medium-sized county). Although our dataset is incomplete nationwide due to the undetectable super-emitters on top of high pollution, our results imply that super-emitters contribute significantly to national NOx budgets and thus suggest the necessity to address the NOx budget by revisiting super-emitters on a large scale. Integrating the results we obtain here with a multi-tiered observation system can lead to identification and mitigation of anomalous NOx emissions." @default.
- W4313236720 created "2023-01-06" @default.
- W4313236720 creator A5001370428 @default.
- W4313236720 creator A5003835156 @default.
- W4313236720 creator A5004325176 @default.
- W4313236720 creator A5015148931 @default.
- W4313236720 creator A5025013935 @default.
- W4313236720 creator A5027223167 @default.
- W4313236720 creator A5031246359 @default.
- W4313236720 creator A5035282947 @default.
- W4313236720 creator A5061364405 @default.
- W4313236720 creator A5069071328 @default.
- W4313236720 creator A5082469538 @default.
- W4313236720 creator A5084397431 @default.
- W4313236720 creator A5088116572 @default.
- W4313236720 date "2023-03-01" @default.
- W4313236720 modified "2023-10-18" @default.
- W4313236720 title "Widespread missing super-emitters of nitrogen oxides across China inferred from year-round satellite observations" @default.
- W4313236720 cites W1614117239 @default.
- W4313236720 cites W1914319023 @default.
- W4313236720 cites W1976888543 @default.
- W4313236720 cites W1978316624 @default.
- W4313236720 cites W1984090308 @default.
- W4313236720 cites W1997564123 @default.
- W4313236720 cites W2026629099 @default.
- W4313236720 cites W2027404493 @default.
- W4313236720 cites W2045706465 @default.
- W4313236720 cites W2063668679 @default.
- W4313236720 cites W2079702179 @default.
- W4313236720 cites W2084785797 @default.
- W4313236720 cites W2093634559 @default.
- W4313236720 cites W2116468939 @default.
- W4313236720 cites W2123451558 @default.
- W4313236720 cites W2138756490 @default.
- W4313236720 cites W2139709933 @default.
- W4313236720 cites W2155213720 @default.
- W4313236720 cites W2155829461 @default.
- W4313236720 cites W2161621332 @default.
- W4313236720 cites W2171812510 @default.
- W4313236720 cites W2398473410 @default.
- W4313236720 cites W2461331636 @default.
- W4313236720 cites W2575591472 @default.
- W4313236720 cites W2607830915 @default.
- W4313236720 cites W2782054347 @default.
- W4313236720 cites W2800412429 @default.
- W4313236720 cites W2801125850 @default.
- W4313236720 cites W2888164775 @default.
- W4313236720 cites W2895113976 @default.
- W4313236720 cites W2902334028 @default.
- W4313236720 cites W2908366189 @default.
- W4313236720 cites W2908418060 @default.
- W4313236720 cites W2977332479 @default.
- W4313236720 cites W2980034669 @default.
- W4313236720 cites W2981181607 @default.
- W4313236720 cites W2989504300 @default.
- W4313236720 cites W2990705976 @default.
- W4313236720 cites W2995883393 @default.
- W4313236720 cites W3033069661 @default.
- W4313236720 cites W3033223258 @default.
- W4313236720 cites W3033530208 @default.
- W4313236720 cites W3034017249 @default.
- W4313236720 cites W3036945492 @default.
- W4313236720 cites W3043908123 @default.
- W4313236720 cites W3127862808 @default.
- W4313236720 cites W4210833015 @default.
- W4313236720 cites W4220652483 @default.
- W4313236720 cites W632895101 @default.
- W4313236720 doi "https://doi.org/10.1016/j.scitotenv.2022.161157" @default.
- W4313236720 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36574850" @default.
- W4313236720 hasPublicationYear "2023" @default.
- W4313236720 type Work @default.
- W4313236720 citedByCount "0" @default.
- W4313236720 crossrefType "journal-article" @default.
- W4313236720 hasAuthorship W4313236720A5001370428 @default.
- W4313236720 hasAuthorship W4313236720A5003835156 @default.
- W4313236720 hasAuthorship W4313236720A5004325176 @default.
- W4313236720 hasAuthorship W4313236720A5015148931 @default.
- W4313236720 hasAuthorship W4313236720A5025013935 @default.
- W4313236720 hasAuthorship W4313236720A5027223167 @default.
- W4313236720 hasAuthorship W4313236720A5031246359 @default.
- W4313236720 hasAuthorship W4313236720A5035282947 @default.
- W4313236720 hasAuthorship W4313236720A5061364405 @default.
- W4313236720 hasAuthorship W4313236720A5069071328 @default.
- W4313236720 hasAuthorship W4313236720A5082469538 @default.
- W4313236720 hasAuthorship W4313236720A5084397431 @default.
- W4313236720 hasAuthorship W4313236720A5088116572 @default.
- W4313236720 hasConcept C105923489 @default.
- W4313236720 hasConcept C121332964 @default.
- W4313236720 hasConcept C126314574 @default.
- W4313236720 hasConcept C127413603 @default.
- W4313236720 hasConcept C146978453 @default.
- W4313236720 hasConcept C153294291 @default.
- W4313236720 hasConcept C166957645 @default.
- W4313236720 hasConcept C178790620 @default.
- W4313236720 hasConcept C185592680 @default.
- W4313236720 hasConcept C18903297 @default.
- W4313236720 hasConcept C191935318 @default.
- W4313236720 hasConcept C19269812 @default.