Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313236902> ?p ?o ?g. }
Showing items 1 to 91 of
91
with 100 items per page.
- W4313236902 endingPage "33" @default.
- W4313236902 startingPage "27" @default.
- W4313236902 abstract "Background: To assess the effectiveness of inhalation therapy, it is important to evaluate the lungs' structure; thus, visualization of the entire lungs at the level of the alveoli is necessary. To achieve this goal, the applied visualization technique must satisfy the following two conditions simultaneously: (1) it has to obtain images of the entire lungs, since one part of the lungs is influenced by the other parts, and (2) the images have to capture the detailed structure of the alveolus/acinus in which gas exchange occurs. However, current visualization techniques do not fulfill these two conditions simultaneously. Segmentation is a process in which each pixel of the obtained high-resolution images is simplified (i.e., the representation of an image is changed by categorizing and modifying each pixel) so that we can perform three-dimensional volume rendering. One of the bottlenecks of current approaches is that the accuracy of the segmentation of each image has to be evaluated on the outcome of the process (mainly by an expert). It is a formidable task to evaluate the astronomically large numbers of images that would be required to resolve the entire lungs in high resolution. Methods: To overcome this challenge, we propose a new approach based on machine learning (ML) techniques for the validation step. Results: We demonstrate the accuracy of the segmentation process itself by comparison with previously validated images. In this ML approach, to achieve a reasonable accuracy, millions/billions of parameters used for segmentation have to be optimized. This computationally demanding new approach is achievable only due to recent dramatic increases in computation power. Conclusion: The objective of this article is to explain the advantages of ML over the classical approach for acinar imaging." @default.
- W4313236902 created "2023-01-06" @default.
- W4313236902 creator A5000305953 @default.
- W4313236902 creator A5006131395 @default.
- W4313236902 creator A5019584033 @default.
- W4313236902 creator A5040847465 @default.
- W4313236902 creator A5089325654 @default.
- W4313236902 date "2023-02-01" @default.
- W4313236902 modified "2023-10-01" @default.
- W4313236902 title "Application of Machine Learning for Segmentation of the Pulmonary Acinus Imaged by Synchrotron X-Ray Tomography" @default.
- W4313236902 cites W1788732318 @default.
- W4313236902 cites W1875582044 @default.
- W4313236902 cites W1985834800 @default.
- W4313236902 cites W2027714001 @default.
- W4313236902 cites W2076063813 @default.
- W4313236902 cites W2077627640 @default.
- W4313236902 cites W2095210486 @default.
- W4313236902 cites W2136576524 @default.
- W4313236902 cites W2156547138 @default.
- W4313236902 cites W2165434098 @default.
- W4313236902 cites W2252935822 @default.
- W4313236902 cites W2436248183 @default.
- W4313236902 cites W2576404523 @default.
- W4313236902 cites W2891899936 @default.
- W4313236902 cites W2919115771 @default.
- W4313236902 cites W3081423662 @default.
- W4313236902 cites W3160171273 @default.
- W4313236902 doi "https://doi.org/10.1089/jamp.2022.0051" @default.
- W4313236902 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36576411" @default.
- W4313236902 hasPublicationYear "2023" @default.
- W4313236902 type Work @default.
- W4313236902 citedByCount "0" @default.
- W4313236902 crossrefType "journal-article" @default.
- W4313236902 hasAuthorship W4313236902A5000305953 @default.
- W4313236902 hasAuthorship W4313236902A5006131395 @default.
- W4313236902 hasAuthorship W4313236902A5019584033 @default.
- W4313236902 hasAuthorship W4313236902A5040847465 @default.
- W4313236902 hasAuthorship W4313236902A5089325654 @default.
- W4313236902 hasBestOaLocation W43132369021 @default.
- W4313236902 hasConcept C111919701 @default.
- W4313236902 hasConcept C153180895 @default.
- W4313236902 hasConcept C154945302 @default.
- W4313236902 hasConcept C160633673 @default.
- W4313236902 hasConcept C185592680 @default.
- W4313236902 hasConcept C205711294 @default.
- W4313236902 hasConcept C2778764654 @default.
- W4313236902 hasConcept C2780446580 @default.
- W4313236902 hasConcept C30769735 @default.
- W4313236902 hasConcept C31972630 @default.
- W4313236902 hasConcept C36464697 @default.
- W4313236902 hasConcept C41008148 @default.
- W4313236902 hasConcept C55493867 @default.
- W4313236902 hasConcept C89600930 @default.
- W4313236902 hasConcept C98045186 @default.
- W4313236902 hasConceptScore W4313236902C111919701 @default.
- W4313236902 hasConceptScore W4313236902C153180895 @default.
- W4313236902 hasConceptScore W4313236902C154945302 @default.
- W4313236902 hasConceptScore W4313236902C160633673 @default.
- W4313236902 hasConceptScore W4313236902C185592680 @default.
- W4313236902 hasConceptScore W4313236902C205711294 @default.
- W4313236902 hasConceptScore W4313236902C2778764654 @default.
- W4313236902 hasConceptScore W4313236902C2780446580 @default.
- W4313236902 hasConceptScore W4313236902C30769735 @default.
- W4313236902 hasConceptScore W4313236902C31972630 @default.
- W4313236902 hasConceptScore W4313236902C36464697 @default.
- W4313236902 hasConceptScore W4313236902C41008148 @default.
- W4313236902 hasConceptScore W4313236902C55493867 @default.
- W4313236902 hasConceptScore W4313236902C89600930 @default.
- W4313236902 hasConceptScore W4313236902C98045186 @default.
- W4313236902 hasIssue "1" @default.
- W4313236902 hasLocation W43132369021 @default.
- W4313236902 hasLocation W43132369022 @default.
- W4313236902 hasLocation W43132369023 @default.
- W4313236902 hasOpenAccess W4313236902 @default.
- W4313236902 hasPrimaryLocation W43132369021 @default.
- W4313236902 hasRelatedWork W1669643531 @default.
- W4313236902 hasRelatedWork W2005437358 @default.
- W4313236902 hasRelatedWork W2008656436 @default.
- W4313236902 hasRelatedWork W2023558673 @default.
- W4313236902 hasRelatedWork W2048402902 @default.
- W4313236902 hasRelatedWork W2052459122 @default.
- W4313236902 hasRelatedWork W2134924024 @default.
- W4313236902 hasRelatedWork W2337415362 @default.
- W4313236902 hasRelatedWork W2517104666 @default.
- W4313236902 hasRelatedWork W4312857205 @default.
- W4313236902 hasVolume "36" @default.
- W4313236902 isParatext "false" @default.
- W4313236902 isRetracted "false" @default.
- W4313236902 workType "article" @default.