Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313236975> ?p ?o ?g. }
- W4313236975 endingPage "1316" @default.
- W4313236975 startingPage "1305" @default.
- W4313236975 abstract "Radon and its progeny may cause severe health hazards, especially for people working in underground spaces. Therefore, in this study, a hybrid artificial intelligence machine learning-enabled framework is proposed for high-throughput screening of metal-organic frameworks (MOFs) as adsorbents for radon separation from indoor air. MOFs from a specific database were initially screened using a pore-limiting diameter filter. Subsequently, random forest classification and grand canonical Monte Carlo simulations were implemented to identify MOFs with a high adsorbent performance score (APS) and high regenerability (R %). Interpretability and trustworthiness were determined by variable importance analysis , and adsorption mechanisms were elucidated by calculating the adsorption sites using Materials Studio. Notably, two MOF candidates were discovered with higher APS values in both the radon/N2 and radon/O2 systems compared with that of ZrSQU which is the best-performing MOF thus far, with R % values exceeding 85%. Furthermore, the proposed framework can be flexibly applied to multiple data sets due to good performance in model transfer. Therefore, the proposed framework has the potential to provide guidelines for the strategic design of MOFs for radon separation." @default.
- W4313236975 created "2023-01-06" @default.
- W4313236975 creator A5019826791 @default.
- W4313236975 creator A5032534411 @default.
- W4313236975 creator A5034449628 @default.
- W4313236975 creator A5035103858 @default.
- W4313236975 creator A5039631808 @default.
- W4313236975 creator A5063130397 @default.
- W4313236975 creator A5070039085 @default.
- W4313236975 creator A5070774797 @default.
- W4313236975 date "2022-12-28" @default.
- W4313236975 modified "2023-10-12" @default.
- W4313236975 title "Machine Learning-Enabled Framework for High-Throughput Screening of MOFs: Application in Radon/Indoor Air Separation" @default.
- W4313236975 cites W1971569812 @default.
- W4313236975 cites W1988206963 @default.
- W4313236975 cites W1990918587 @default.
- W4313236975 cites W1991754200 @default.
- W4313236975 cites W2022173966 @default.
- W4313236975 cites W2024893917 @default.
- W4313236975 cites W2024963949 @default.
- W4313236975 cites W2028054907 @default.
- W4313236975 cites W2033498579 @default.
- W4313236975 cites W2045989938 @default.
- W4313236975 cites W2053294416 @default.
- W4313236975 cites W2053631681 @default.
- W4313236975 cites W2059530460 @default.
- W4313236975 cites W2059556870 @default.
- W4313236975 cites W2066715861 @default.
- W4313236975 cites W2069945445 @default.
- W4313236975 cites W2084266203 @default.
- W4313236975 cites W2085281262 @default.
- W4313236975 cites W2090119104 @default.
- W4313236975 cites W2100553071 @default.
- W4313236975 cites W2100716186 @default.
- W4313236975 cites W2107489795 @default.
- W4313236975 cites W2117150409 @default.
- W4313236975 cites W2132730382 @default.
- W4313236975 cites W2141939342 @default.
- W4313236975 cites W2155632266 @default.
- W4313236975 cites W2161898692 @default.
- W4313236975 cites W2211377451 @default.
- W4313236975 cites W2261059368 @default.
- W4313236975 cites W2312521721 @default.
- W4313236975 cites W2323321142 @default.
- W4313236975 cites W2330004623 @default.
- W4313236975 cites W2507625124 @default.
- W4313236975 cites W2587385717 @default.
- W4313236975 cites W2751247234 @default.
- W4313236975 cites W2782763124 @default.
- W4313236975 cites W2783303410 @default.
- W4313236975 cites W2892113269 @default.
- W4313236975 cites W2903795598 @default.
- W4313236975 cites W2982006073 @default.
- W4313236975 cites W2983028326 @default.
- W4313236975 cites W3048908832 @default.
- W4313236975 cites W3099802519 @default.
- W4313236975 cites W3104753870 @default.
- W4313236975 cites W3159017721 @default.
- W4313236975 cites W3191561027 @default.
- W4313236975 cites W3205578373 @default.
- W4313236975 cites W4200320198 @default.
- W4313236975 cites W4210632708 @default.
- W4313236975 cites W4221117152 @default.
- W4313236975 cites W4229027399 @default.
- W4313236975 cites W4286697352 @default.
- W4313236975 doi "https://doi.org/10.1021/acsami.2c19207" @default.
- W4313236975 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36575576" @default.
- W4313236975 hasPublicationYear "2022" @default.
- W4313236975 type Work @default.
- W4313236975 citedByCount "1" @default.
- W4313236975 countsByYear W43132369752023 @default.
- W4313236975 crossrefType "journal-article" @default.
- W4313236975 hasAuthorship W4313236975A5019826791 @default.
- W4313236975 hasAuthorship W4313236975A5032534411 @default.
- W4313236975 hasAuthorship W4313236975A5034449628 @default.
- W4313236975 hasAuthorship W4313236975A5035103858 @default.
- W4313236975 hasAuthorship W4313236975A5039631808 @default.
- W4313236975 hasAuthorship W4313236975A5063130397 @default.
- W4313236975 hasAuthorship W4313236975A5070039085 @default.
- W4313236975 hasAuthorship W4313236975A5070774797 @default.
- W4313236975 hasConcept C101468663 @default.
- W4313236975 hasConcept C105795698 @default.
- W4313236975 hasConcept C111919701 @default.
- W4313236975 hasConcept C119857082 @default.
- W4313236975 hasConcept C121332964 @default.
- W4313236975 hasConcept C127413603 @default.
- W4313236975 hasConcept C150394285 @default.
- W4313236975 hasConcept C154945302 @default.
- W4313236975 hasConcept C157764524 @default.
- W4313236975 hasConcept C178790620 @default.
- W4313236975 hasConcept C179366358 @default.
- W4313236975 hasConcept C185592680 @default.
- W4313236975 hasConcept C188198153 @default.
- W4313236975 hasConcept C192562407 @default.
- W4313236975 hasConcept C19499675 @default.
- W4313236975 hasConcept C21880701 @default.
- W4313236975 hasConcept C2776061190 @default.
- W4313236975 hasConcept C2781067378 @default.