Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313237249> ?p ?o ?g. }
- W4313237249 endingPage "e43059" @default.
- W4313237249 startingPage "e43059" @default.
- W4313237249 abstract "Social determinants of health (SDoH), such as geographic neighborhoods, access to health care, education, and social structure, are important factors affecting people's health and health outcomes. The SDoH of patients are scarcely documented in a discrete format in electronic health records (EHRs) but are often available in free-text clinical narratives such as physician notes. Innovative methods like natural language processing (NLP) are being developed to identify and extract SDoH from EHRs, but it is imperative that the input of key stakeholders is included as NLP systems are designed.This study aims to understand the feasibility, challenges, and benefits of developing an NLP system to uncover SDoH from clinical narratives by conducting interviews with key stakeholders: (1) oncologists, (2) data analysts, (3) citizen scientists, and (4) patient navigators.Individuals who frequently work with SDoH data were invited to participate in semistructured interviews. All interviews were recorded and subsequently transcribed. After coding transcripts and developing a codebook, the constant comparative method was used to generate themes.A total of 16 participants were interviewed (5 data analysts, 4 patient navigators, 4 physicians, and 3 citizen scientists). Three main themes emerged, accompanied by subthemes. The first theme, importance and approaches to obtaining SDoH, describes how every participant (n=16, 100%) regarded SDoH as important. In particular, proximity to the hospital and income levels were frequently relied upon. Communication about SDoH typically occurs during the initial conversation with the oncologist, but more personal information is often acquired by patient navigators. The second theme, SDoH exists in numerous forms, exemplified how SDoH arises during informal communication and can be difficult to enter into the EHR. The final theme, incorporating SDoH into health services research, addresses how more informed SDoH can be collected. One strategy is to empower patients so they are aware about the importance of SDoH, as well as employing NLP techniques to make narrative data available in a discrete format, which can provide oncologists with actionable data summaries.Extracting SDoH from EHRs was considered valuable and necessary, but obstacles such as narrative data format can make the process difficult. NLP can be a potential solution, but as the technology is developed, it is important to consider how key stakeholders document SDoH, apply the NLP systems, and use the extracted SDoH in health outcome studies." @default.
- W4313237249 created "2023-01-06" @default.
- W4313237249 creator A5010253402 @default.
- W4313237249 creator A5015181613 @default.
- W4313237249 creator A5020154592 @default.
- W4313237249 creator A5030951014 @default.
- W4313237249 creator A5040363472 @default.
- W4313237249 creator A5044217830 @default.
- W4313237249 creator A5052505769 @default.
- W4313237249 date "2022-12-27" @default.
- W4313237249 modified "2023-10-14" @default.
- W4313237249 title "Barriers and Facilitators of Obtaining Social Determinants of Health of Patients With Cancer Through the Electronic Health Record Using Natural Language Processing Technology: Qualitative Feasibility Study With Stakeholder Interviews" @default.
- W4313237249 cites W1971796909 @default.
- W4313237249 cites W2058044179 @default.
- W4313237249 cites W2071213671 @default.
- W4313237249 cites W2072399290 @default.
- W4313237249 cites W2104860609 @default.
- W4313237249 cites W2158242434 @default.
- W4313237249 cites W2342360716 @default.
- W4313237249 cites W2796180820 @default.
- W4313237249 cites W2899248972 @default.
- W4313237249 cites W2946573635 @default.
- W4313237249 cites W2972879529 @default.
- W4313237249 cites W3025114311 @default.
- W4313237249 cites W3034019787 @default.
- W4313237249 cites W3040419600 @default.
- W4313237249 cites W3104193169 @default.
- W4313237249 cites W3115990498 @default.
- W4313237249 cites W3128717124 @default.
- W4313237249 cites W3131209437 @default.
- W4313237249 cites W3151993130 @default.
- W4313237249 cites W3167179910 @default.
- W4313237249 cites W3188301986 @default.
- W4313237249 cites W3200519641 @default.
- W4313237249 cites W3202375701 @default.
- W4313237249 cites W3207894119 @default.
- W4313237249 cites W4212860675 @default.
- W4313237249 cites W4220772663 @default.
- W4313237249 cites W4225549433 @default.
- W4313237249 cites W4284961115 @default.
- W4313237249 cites W4291313167 @default.
- W4313237249 doi "https://doi.org/10.2196/43059" @default.
- W4313237249 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36574288" @default.
- W4313237249 hasPublicationYear "2022" @default.
- W4313237249 type Work @default.
- W4313237249 citedByCount "0" @default.
- W4313237249 crossrefType "journal-article" @default.
- W4313237249 hasAuthorship W4313237249A5010253402 @default.
- W4313237249 hasAuthorship W4313237249A5015181613 @default.
- W4313237249 hasAuthorship W4313237249A5020154592 @default.
- W4313237249 hasAuthorship W4313237249A5030951014 @default.
- W4313237249 hasAuthorship W4313237249A5040363472 @default.
- W4313237249 hasAuthorship W4313237249A5044217830 @default.
- W4313237249 hasAuthorship W4313237249A5052505769 @default.
- W4313237249 hasBestOaLocation W43132372491 @default.
- W4313237249 hasConcept C138816342 @default.
- W4313237249 hasConcept C144024400 @default.
- W4313237249 hasConcept C156325361 @default.
- W4313237249 hasConcept C15744967 @default.
- W4313237249 hasConcept C159110408 @default.
- W4313237249 hasConcept C160735492 @default.
- W4313237249 hasConcept C17744445 @default.
- W4313237249 hasConcept C190248442 @default.
- W4313237249 hasConcept C199539241 @default.
- W4313237249 hasConcept C201305675 @default.
- W4313237249 hasConcept C36289849 @default.
- W4313237249 hasConcept C39549134 @default.
- W4313237249 hasConcept C509550671 @default.
- W4313237249 hasConcept C71924100 @default.
- W4313237249 hasConcept C78491826 @default.
- W4313237249 hasConceptScore W4313237249C138816342 @default.
- W4313237249 hasConceptScore W4313237249C144024400 @default.
- W4313237249 hasConceptScore W4313237249C156325361 @default.
- W4313237249 hasConceptScore W4313237249C15744967 @default.
- W4313237249 hasConceptScore W4313237249C159110408 @default.
- W4313237249 hasConceptScore W4313237249C160735492 @default.
- W4313237249 hasConceptScore W4313237249C17744445 @default.
- W4313237249 hasConceptScore W4313237249C190248442 @default.
- W4313237249 hasConceptScore W4313237249C199539241 @default.
- W4313237249 hasConceptScore W4313237249C201305675 @default.
- W4313237249 hasConceptScore W4313237249C36289849 @default.
- W4313237249 hasConceptScore W4313237249C39549134 @default.
- W4313237249 hasConceptScore W4313237249C509550671 @default.
- W4313237249 hasConceptScore W4313237249C71924100 @default.
- W4313237249 hasConceptScore W4313237249C78491826 @default.
- W4313237249 hasIssue "12" @default.
- W4313237249 hasLocation W43132372491 @default.
- W4313237249 hasLocation W43132372492 @default.
- W4313237249 hasLocation W43132372493 @default.
- W4313237249 hasOpenAccess W4313237249 @default.
- W4313237249 hasPrimaryLocation W43132372491 @default.
- W4313237249 hasRelatedWork W2047283075 @default.
- W4313237249 hasRelatedWork W2119545855 @default.
- W4313237249 hasRelatedWork W2188142764 @default.
- W4313237249 hasRelatedWork W2363024216 @default.
- W4313237249 hasRelatedWork W2748952813 @default.
- W4313237249 hasRelatedWork W2885438148 @default.
- W4313237249 hasRelatedWork W2899084033 @default.