Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313237424> ?p ?o ?g. }
- W4313237424 abstract "Abstract Background Oral squamous cell carcinoma (OSCC) accounts for a frequently-occurring head and neck cancer, which is characterized by high rates of morbidity and mortality. Metabolism-related genes (MRGs) show close association with OSCC development, metastasis and progression, so we constructed an MRGs-based OSCC prognosis model for evaluating OSCC prognostic outcome. Methods This work obtained gene expression profile as well as the relevant clinical information from the The Cancer Genome Atlas (TCGA) database, determined the MRGs related to OSCC by difference analysis, screened the prognosis-related MRGs by performing univariate Cox analysis, and used such identified MRGs for constructing the OSCC prognosis prediction model through Lasso-Cox regression. Besides, we validated the model with the GSE41613 dataset based on Gene Expression Omnibus (GEO) database. Results The present work screened 317 differentially expressed MRGs from the database, identified 12 OSCC prognostic MRGs through univariate Cox regression, and then established a clinical prognostic model composed of 11 MRGs by Lasso-Cox analysis. Based on the optimal risk score threshold, cases were classified as low- or high-risk group. As suggested by Kaplan–Meier (KM) analysis, survival rate was obviously different between the two groups in the TCGA training set ( P < 0.001). According to subsequent univariate and multivariate Cox regression, risk score served as the factor to predict prognosis relative to additional clinical features ( P < 0.001). Besides, area under ROC curve (AUC) values for patient survival at 1, 3 and 5 years were determined as 0.63, 0.70, and 0.76, separately, indicating that the prognostic model has good predictive accuracy. Then, we validated this clinical prognostic model using GSE41613. To enhance our model prediction accuracy, age, gender, risk score together with TNM stage were incorporated in a nomogram. As indicated by results of ROC curve and calibration curve analyses, the as-constructed nomogram had enhanced prediction accuracy compared with clinicopathological features alone, besides, combining clinicopathological characteristics with risk score contributed to predicting patient prognosis and guiding clinical decision-making. Conclusion In this study, 11 MRGs prognostic models based on TCGA database showed superior predictive performance and had a certain clinical application prospect in guiding individualized." @default.
- W4313237424 created "2023-01-06" @default.
- W4313237424 creator A5000113721 @default.
- W4313237424 creator A5010063953 @default.
- W4313237424 creator A5020810072 @default.
- W4313237424 creator A5036016529 @default.
- W4313237424 creator A5038647128 @default.
- W4313237424 creator A5046582744 @default.
- W4313237424 creator A5046707383 @default.
- W4313237424 creator A5055056026 @default.
- W4313237424 creator A5069594867 @default.
- W4313237424 creator A5088663125 @default.
- W4313237424 date "2022-12-24" @default.
- W4313237424 modified "2023-10-18" @default.
- W4313237424 title "Construction and validation of a metabolic-related genes prognostic model for oral squamous cell carcinoma based on bioinformatics" @default.
- W4313237424 cites W2035461055 @default.
- W4313237424 cites W2049775573 @default.
- W4313237424 cites W2099425730 @default.
- W4313237424 cites W2403282223 @default.
- W4313237424 cites W2759385754 @default.
- W4313237424 cites W2768840943 @default.
- W4313237424 cites W2773835590 @default.
- W4313237424 cites W2793226176 @default.
- W4313237424 cites W2797420481 @default.
- W4313237424 cites W2808182511 @default.
- W4313237424 cites W2810358408 @default.
- W4313237424 cites W2810891852 @default.
- W4313237424 cites W2887134879 @default.
- W4313237424 cites W2890811886 @default.
- W4313237424 cites W2890968295 @default.
- W4313237424 cites W2902741527 @default.
- W4313237424 cites W2903227793 @default.
- W4313237424 cites W2905918155 @default.
- W4313237424 cites W2911915561 @default.
- W4313237424 cites W2912271695 @default.
- W4313237424 cites W2921967086 @default.
- W4313237424 cites W2954527278 @default.
- W4313237424 cites W2966458961 @default.
- W4313237424 cites W2969196539 @default.
- W4313237424 cites W2975211926 @default.
- W4313237424 cites W2980275245 @default.
- W4313237424 cites W2982698800 @default.
- W4313237424 cites W2996885263 @default.
- W4313237424 cites W3009846508 @default.
- W4313237424 cites W3013132473 @default.
- W4313237424 cites W3015112684 @default.
- W4313237424 cites W3020098198 @default.
- W4313237424 cites W3020548503 @default.
- W4313237424 cites W3028612365 @default.
- W4313237424 cites W3035938128 @default.
- W4313237424 cites W3036017886 @default.
- W4313237424 cites W3080160093 @default.
- W4313237424 cites W3083207729 @default.
- W4313237424 cites W3089498703 @default.
- W4313237424 cites W3092396220 @default.
- W4313237424 cites W3092768562 @default.
- W4313237424 cites W3093263672 @default.
- W4313237424 cites W3096798430 @default.
- W4313237424 cites W3101090048 @default.
- W4313237424 cites W3110099273 @default.
- W4313237424 cites W3110421199 @default.
- W4313237424 cites W3127530268 @default.
- W4313237424 cites W3130136860 @default.
- W4313237424 cites W3134517096 @default.
- W4313237424 cites W3136363970 @default.
- W4313237424 cites W3140888207 @default.
- W4313237424 cites W3149389667 @default.
- W4313237424 cites W3156726974 @default.
- W4313237424 cites W3158263555 @default.
- W4313237424 cites W3160849398 @default.
- W4313237424 cites W3167310006 @default.
- W4313237424 cites W3177409010 @default.
- W4313237424 cites W3180266641 @default.
- W4313237424 cites W3183777361 @default.
- W4313237424 cites W3185927169 @default.
- W4313237424 cites W3187333436 @default.
- W4313237424 cites W3188448015 @default.
- W4313237424 cites W3198711583 @default.
- W4313237424 cites W3199899728 @default.
- W4313237424 cites W3203670109 @default.
- W4313237424 cites W3212571651 @default.
- W4313237424 cites W3216166793 @default.
- W4313237424 cites W4200385729 @default.
- W4313237424 cites W4210970853 @default.
- W4313237424 cites W4225144480 @default.
- W4313237424 doi "https://doi.org/10.1186/s12920-022-01417-3" @default.
- W4313237424 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36566175" @default.
- W4313237424 hasPublicationYear "2022" @default.
- W4313237424 type Work @default.
- W4313237424 citedByCount "0" @default.
- W4313237424 crossrefType "journal-article" @default.
- W4313237424 hasAuthorship W4313237424A5000113721 @default.
- W4313237424 hasAuthorship W4313237424A5010063953 @default.
- W4313237424 hasAuthorship W4313237424A5020810072 @default.
- W4313237424 hasAuthorship W4313237424A5036016529 @default.
- W4313237424 hasAuthorship W4313237424A5038647128 @default.
- W4313237424 hasAuthorship W4313237424A5046582744 @default.
- W4313237424 hasAuthorship W4313237424A5046707383 @default.
- W4313237424 hasAuthorship W4313237424A5055056026 @default.
- W4313237424 hasAuthorship W4313237424A5069594867 @default.