Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313237572> ?p ?o ?g. }
- W4313237572 endingPage "355" @default.
- W4313237572 startingPage "339" @default.
- W4313237572 abstract "Diffusion Monte Carlo (DMC) is one of the most accurate techniques available for calculating the electronic properties of molecules and materials, yet it often remains a challenge to economically compute forces using this technique. As a result, ab initio molecular dynamics simulations and geometry optimizations that employ Diffusion Monte Carlo forces are often out of reach. One potential approach for accelerating the computation of DMC forces is to machine learn these forces from DMC energy calculations. In this work, we employ Behler-Parrinello Neural Networks to learn DMC forces from DMC energy calculations for geometry optimization and molecular dynamics simulations of small molecules. We illustrate the unique challenges that stem from learning forces without explicit force data and from noisy energy data by making rigorous comparisons of potential energy surface, dynamics, and optimization predictions among ab initio density functional theory (DFT) simulations and machine-learning models trained on DFT energies with forces, DFT energies without forces, and DMC energies without forces. We show for three small molecules─C2, H2O, and CH3Cl─that machine-learned DMC dynamics can reproduce average bond lengths and angles within a few percent of known experimental results at one hundredth of the typical cost. Our work describes a much-needed means of performing dynamics simulations on high-accuracy, DMC PESs and for generating DMC-quality molecular geometries given current algorithmic constraints." @default.
- W4313237572 created "2023-01-06" @default.
- W4313237572 creator A5036947439 @default.
- W4313237572 creator A5070641855 @default.
- W4313237572 date "2022-12-28" @default.
- W4313237572 modified "2023-10-12" @default.
- W4313237572 title "Machine Learning Diffusion Monte Carlo Forces" @default.
- W4313237572 cites W1153814749 @default.
- W4313237572 cites W1510073064 @default.
- W4313237572 cites W1671597031 @default.
- W4313237572 cites W1678941157 @default.
- W4313237572 cites W1843396089 @default.
- W4313237572 cites W1968260576 @default.
- W4313237572 cites W1978183953 @default.
- W4313237572 cites W1979680610 @default.
- W4313237572 cites W1981368803 @default.
- W4313237572 cites W1986088231 @default.
- W4313237572 cites W1988926951 @default.
- W4313237572 cites W1989152148 @default.
- W4313237572 cites W1990834052 @default.
- W4313237572 cites W2008041424 @default.
- W4313237572 cites W2010785223 @default.
- W4313237572 cites W2015068945 @default.
- W4313237572 cites W2016612689 @default.
- W4313237572 cites W2025444507 @default.
- W4313237572 cites W2036060950 @default.
- W4313237572 cites W2037023338 @default.
- W4313237572 cites W2049310329 @default.
- W4313237572 cites W2053117030 @default.
- W4313237572 cites W2055526416 @default.
- W4313237572 cites W2057262256 @default.
- W4313237572 cites W2057987165 @default.
- W4313237572 cites W2061762703 @default.
- W4313237572 cites W2062580461 @default.
- W4313237572 cites W2065517606 @default.
- W4313237572 cites W2072808339 @default.
- W4313237572 cites W2083415705 @default.
- W4313237572 cites W2090950744 @default.
- W4313237572 cites W2093551055 @default.
- W4313237572 cites W2098614082 @default.
- W4313237572 cites W2237287253 @default.
- W4313237572 cites W2410722695 @default.
- W4313237572 cites W2547447472 @default.
- W4313237572 cites W2601081289 @default.
- W4313237572 cites W2756519801 @default.
- W4313237572 cites W2764301816 @default.
- W4313237572 cites W2768494341 @default.
- W4313237572 cites W2778051509 @default.
- W4313237572 cites W2785813126 @default.
- W4313237572 cites W2889703828 @default.
- W4313237572 cites W2891365537 @default.
- W4313237572 cites W2899212210 @default.
- W4313237572 cites W2904141086 @default.
- W4313237572 cites W2923091270 @default.
- W4313237572 cites W2944649260 @default.
- W4313237572 cites W2951002155 @default.
- W4313237572 cites W2955097063 @default.
- W4313237572 cites W2979628795 @default.
- W4313237572 cites W3004281096 @default.
- W4313237572 cites W3034845708 @default.
- W4313237572 cites W3035463995 @default.
- W4313237572 cites W3048111025 @default.
- W4313237572 cites W3088965305 @default.
- W4313237572 cites W3098787547 @default.
- W4313237572 cites W3101095095 @default.
- W4313237572 cites W3102448310 @default.
- W4313237572 cites W3102610030 @default.
- W4313237572 cites W3102927675 @default.
- W4313237572 cites W3103832445 @default.
- W4313237572 cites W3104681245 @default.
- W4313237572 cites W3104700638 @default.
- W4313237572 cites W3106221144 @default.
- W4313237572 cites W3108847668 @default.
- W4313237572 cites W3116757262 @default.
- W4313237572 cites W3161704673 @default.
- W4313237572 cites W3169532909 @default.
- W4313237572 cites W3205964420 @default.
- W4313237572 cites W4206200384 @default.
- W4313237572 cites W4206333044 @default.
- W4313237572 cites W4207069381 @default.
- W4313237572 cites W4289143709 @default.
- W4313237572 cites W4296025716 @default.
- W4313237572 cites W4307848428 @default.
- W4313237572 cites W4310136637 @default.
- W4313237572 doi "https://doi.org/10.1021/acs.jpca.2c05904" @default.
- W4313237572 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36576803" @default.
- W4313237572 hasPublicationYear "2022" @default.
- W4313237572 type Work @default.
- W4313237572 citedByCount "1" @default.
- W4313237572 countsByYear W43132375722022 @default.
- W4313237572 countsByYear W43132375722023 @default.
- W4313237572 crossrefType "journal-article" @default.
- W4313237572 hasAuthorship W4313237572A5036947439 @default.
- W4313237572 hasAuthorship W4313237572A5070641855 @default.
- W4313237572 hasBestOaLocation W43132375722 @default.
- W4313237572 hasConcept C105795698 @default.
- W4313237572 hasConcept C10803110 @default.
- W4313237572 hasConcept C111350023 @default.