Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313237767> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313237767 abstract "The feasibility of a deep learning-based markerless real-time tumor tracking (RTTT) method was retrospectively studied with orthogonal kV X-ray images and clinical tracking records acquired during lung cancer treatment.Ten patients with lung cancer treated with marker-implanted RTTT were included. The prescription dose was 50 Gy in four fractions, using seven- to nine-port non-coplanar static beams. This corresponds to 14-18 X-ray tube angles for an orthogonal X-ray imaging system rotating with the gantry. All patients underwent 10 respiratory phases four-dimensional computed tomography. After a data augmentation approach, for each X-ray tube angle of a patient, 2250 digitally reconstructed radiograph (DRR) images with gross tumor volume (GTV) contour labeled were obtained. These images were adopted to train the patient and X-ray tube angle-specific GTV contour prediction model. During the testing, the model trained with DRR images predicted GTV contour on X-ray projection images acquired during treatment. The predicted three-dimensional (3D) positions of the GTV were calculated based on the centroids of the contours in the orthogonal images. The 3D positions of GTV determined by the marker-implanted RTTT during the treatment were considered as the ground truth. The 3D deviations between the prediction and the ground truth were calculated to evaluate the performance of the model.The median GTV volume and motion range were 7.42 (range, 1.18-25.74) cm3 and 22 (range, 11-28) mm, respectively. In total, 8993 3D position comparisons were included. The mean calculation time was 85 ms per image. The overall median value of the 3D deviation was 2.27 (interquartile range: 1.66-2.95) mm. The probability of the 3D deviation smaller than 5 mm was 93.6%.The evaluation results and calculation efficiency show the proposed deep learning-based markerless RTTT method may be feasible for patients with lung cancer." @default.
- W4313237767 created "2023-01-06" @default.
- W4313237767 creator A5021453588 @default.
- W4313237767 creator A5021915499 @default.
- W4313237767 creator A5023608537 @default.
- W4313237767 creator A5064136971 @default.
- W4313237767 creator A5091878958 @default.
- W4313237767 date "2022-12-28" @default.
- W4313237767 modified "2023-10-18" @default.
- W4313237767 title "Feasibility study of deep learning‐based markerless real‐time lung tumor tracking with orthogonal X‐ray projection images" @default.
- W4313237767 cites W1861492603 @default.
- W4313237767 cites W1981638774 @default.
- W4313237767 cites W1989823762 @default.
- W4313237767 cites W2055483062 @default.
- W4313237767 cites W2072527594 @default.
- W4313237767 cites W2084437175 @default.
- W4313237767 cites W2109083229 @default.
- W4313237767 cites W2127480863 @default.
- W4313237767 cites W2156753268 @default.
- W4313237767 cites W2194775991 @default.
- W4313237767 cites W2565639579 @default.
- W4313237767 cites W2613527245 @default.
- W4313237767 cites W2762962242 @default.
- W4313237767 cites W2790470786 @default.
- W4313237767 cites W2806070179 @default.
- W4313237767 cites W2901005097 @default.
- W4313237767 cites W2951743624 @default.
- W4313237767 cites W2972931596 @default.
- W4313237767 cites W3041033690 @default.
- W4313237767 cites W3092569889 @default.
- W4313237767 cites W3105186686 @default.
- W4313237767 cites W3197248495 @default.
- W4313237767 cites W4200222522 @default.
- W4313237767 cites W4205592176 @default.
- W4313237767 cites W4225312038 @default.
- W4313237767 cites W4313237767 @default.
- W4313237767 doi "https://doi.org/10.1002/acm2.13894" @default.
- W4313237767 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36576920" @default.
- W4313237767 hasPublicationYear "2022" @default.
- W4313237767 type Work @default.
- W4313237767 citedByCount "1" @default.
- W4313237767 countsByYear W43132377672022 @default.
- W4313237767 crossrefType "journal-article" @default.
- W4313237767 hasAuthorship W4313237767A5021453588 @default.
- W4313237767 hasAuthorship W4313237767A5021915499 @default.
- W4313237767 hasAuthorship W4313237767A5023608537 @default.
- W4313237767 hasAuthorship W4313237767A5064136971 @default.
- W4313237767 hasAuthorship W4313237767A5091878958 @default.
- W4313237767 hasBestOaLocation W43132377671 @default.
- W4313237767 hasConcept C11413529 @default.
- W4313237767 hasConcept C126838900 @default.
- W4313237767 hasConcept C146599234 @default.
- W4313237767 hasConcept C154945302 @default.
- W4313237767 hasConcept C15744967 @default.
- W4313237767 hasConcept C19417346 @default.
- W4313237767 hasConcept C2775936607 @default.
- W4313237767 hasConcept C2989005 @default.
- W4313237767 hasConcept C33923547 @default.
- W4313237767 hasConcept C36454342 @default.
- W4313237767 hasConcept C41008148 @default.
- W4313237767 hasConcept C57493831 @default.
- W4313237767 hasConcept C71924100 @default.
- W4313237767 hasConceptScore W4313237767C11413529 @default.
- W4313237767 hasConceptScore W4313237767C126838900 @default.
- W4313237767 hasConceptScore W4313237767C146599234 @default.
- W4313237767 hasConceptScore W4313237767C154945302 @default.
- W4313237767 hasConceptScore W4313237767C15744967 @default.
- W4313237767 hasConceptScore W4313237767C19417346 @default.
- W4313237767 hasConceptScore W4313237767C2775936607 @default.
- W4313237767 hasConceptScore W4313237767C2989005 @default.
- W4313237767 hasConceptScore W4313237767C33923547 @default.
- W4313237767 hasConceptScore W4313237767C36454342 @default.
- W4313237767 hasConceptScore W4313237767C41008148 @default.
- W4313237767 hasConceptScore W4313237767C57493831 @default.
- W4313237767 hasConceptScore W4313237767C71924100 @default.
- W4313237767 hasIssue "4" @default.
- W4313237767 hasLocation W43132377671 @default.
- W4313237767 hasLocation W43132377672 @default.
- W4313237767 hasLocation W43132377673 @default.
- W4313237767 hasOpenAccess W4313237767 @default.
- W4313237767 hasPrimaryLocation W43132377671 @default.
- W4313237767 hasRelatedWork W1568701304 @default.
- W4313237767 hasRelatedWork W2146154945 @default.
- W4313237767 hasRelatedWork W2375888197 @default.
- W4313237767 hasRelatedWork W2748952813 @default.
- W4313237767 hasRelatedWork W2806096627 @default.
- W4313237767 hasRelatedWork W2899084033 @default.
- W4313237767 hasRelatedWork W2945259147 @default.
- W4313237767 hasRelatedWork W4250549352 @default.
- W4313237767 hasRelatedWork W4322722608 @default.
- W4313237767 hasRelatedWork W4386041617 @default.
- W4313237767 hasVolume "24" @default.
- W4313237767 isParatext "false" @default.
- W4313237767 isRetracted "false" @default.
- W4313237767 workType "article" @default.