Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313238583> ?p ?o ?g. }
Showing items 1 to 60 of
60
with 100 items per page.
- W4313238583 endingPage "35" @default.
- W4313238583 startingPage "17" @default.
- W4313238583 abstract "Introduction:Climate change and global warming are among the greatest challenges facing the world today. A newconcept, known as urban resilience, has been developed in response. There are various approaches to urban resilience. Among them, is the urban energy resilience (UER) approach, which poses a considerable challenge. Machine learning (ML), as an application of artificial intelligence (AI), provides powerful and affordable computing resources, large-scale datamining, advanced algorithms, and real-timemonitoring. However, veryfewstudies have investigated howsuch aspectscan be integrated into urban resilience in general, and UER in particular. Purpose of the study: The study develops an integrative framework that can improve UER, based on ML methods. Methodology: We carried out a bibliometric analysisand a systematic review of UER in accordance with AI concepts, models, and applications. Results:The findings of this study were used to create an integrative framework, based on three hierarchical phases, which effectively addressed the main capabilities of UER, identified its priorities, and shed light on how ML can benefit UER as a whole. Novelty:The framework developed in this study also offers insights in integrating ML methods into UER as strategically as possible, especially in the context of climate change and urban energy systems. This framework can serve as reference for specialistsand decision-makers aiming to expand AI and ML applications to optimize UER." @default.
- W4313238583 created "2023-01-06" @default.
- W4313238583 creator A5046465716 @default.
- W4313238583 creator A5081397943 @default.
- W4313238583 date "2022-12-29" @default.
- W4313238583 modified "2023-10-18" @default.
- W4313238583 title "IMPROVINGURBAN ENERGYRESILIENCEWITH AN INTEGRATIVE FRAMEWORK BASED ON MACHINE LEARNINGMETHODS" @default.
- W4313238583 doi "https://doi.org/10.23968/2500-0055-2022-7-4-17-35" @default.
- W4313238583 hasPublicationYear "2022" @default.
- W4313238583 type Work @default.
- W4313238583 citedByCount "2" @default.
- W4313238583 countsByYear W43132385832023 @default.
- W4313238583 crossrefType "journal-article" @default.
- W4313238583 hasAuthorship W4313238583A5046465716 @default.
- W4313238583 hasAuthorship W4313238583A5081397943 @default.
- W4313238583 hasBestOaLocation W43132385831 @default.
- W4313238583 hasConcept C121332964 @default.
- W4313238583 hasConcept C138885662 @default.
- W4313238583 hasConcept C151730666 @default.
- W4313238583 hasConcept C154945302 @default.
- W4313238583 hasConcept C2522767166 @default.
- W4313238583 hasConcept C27206212 @default.
- W4313238583 hasConcept C2778738651 @default.
- W4313238583 hasConcept C2779343474 @default.
- W4313238583 hasConcept C2779585090 @default.
- W4313238583 hasConcept C41008148 @default.
- W4313238583 hasConcept C86803240 @default.
- W4313238583 hasConcept C97355855 @default.
- W4313238583 hasConceptScore W4313238583C121332964 @default.
- W4313238583 hasConceptScore W4313238583C138885662 @default.
- W4313238583 hasConceptScore W4313238583C151730666 @default.
- W4313238583 hasConceptScore W4313238583C154945302 @default.
- W4313238583 hasConceptScore W4313238583C2522767166 @default.
- W4313238583 hasConceptScore W4313238583C27206212 @default.
- W4313238583 hasConceptScore W4313238583C2778738651 @default.
- W4313238583 hasConceptScore W4313238583C2779343474 @default.
- W4313238583 hasConceptScore W4313238583C2779585090 @default.
- W4313238583 hasConceptScore W4313238583C41008148 @default.
- W4313238583 hasConceptScore W4313238583C86803240 @default.
- W4313238583 hasConceptScore W4313238583C97355855 @default.
- W4313238583 hasIssue "4" @default.
- W4313238583 hasLocation W43132385831 @default.
- W4313238583 hasOpenAccess W4313238583 @default.
- W4313238583 hasPrimaryLocation W43132385831 @default.
- W4313238583 hasRelatedWork W2010393090 @default.
- W4313238583 hasRelatedWork W2160327429 @default.
- W4313238583 hasRelatedWork W2235854243 @default.
- W4313238583 hasRelatedWork W2634235420 @default.
- W4313238583 hasRelatedWork W2783774737 @default.
- W4313238583 hasRelatedWork W2892727162 @default.
- W4313238583 hasRelatedWork W2953089972 @default.
- W4313238583 hasRelatedWork W4377042869 @default.
- W4313238583 hasRelatedWork W4378376552 @default.
- W4313238583 hasRelatedWork W1566964602 @default.
- W4313238583 hasVolume "7" @default.
- W4313238583 isParatext "false" @default.
- W4313238583 isRetracted "false" @default.
- W4313238583 workType "article" @default.