Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313241424> ?p ?o ?g. }
- W4313241424 endingPage "281" @default.
- W4313241424 startingPage "273" @default.
- W4313241424 abstract "The authors applied natural language processing and machine learning to explore the disease-related language patterns that warrant objective measures for assessing language ability in Japanese patients with Alzheimer disease (AD), while most previous studies have used large publicly available data sets in Euro-American languages.The authors obtained 276 speech samples from 42 patients with AD and 52 healthy controls, aged 50 years or older. A natural language processing library for Python was used, spaCy, with an add-on library, GiNZA, which is a Japanese parser based on Universal Dependencies designed to facilitate multilingual parser development. The authors used eXtreme Gradient Boosting for our classification algorithm. Each unit of part-of-speech and dependency was tagged and counted to create features such as tag-frequency and tag-to-tag transition-frequency. Each feature's importance was computed during the 100-fold repeated random subsampling validation and averaged.The model resulted in an accuracy of 0.84 (SD = 0.06), and an area under the curve of 0.90 (SD = 0.03). Among the features that were important for such predictions, seven of the top 10 features were related to part-of-speech, while the remaining three were related to dependency. A box plot analysis demonstrated that the appearance rates of content words-related features were lower among the patients, whereas those with stagnation-related features were higher.The current study demonstrated a promising level of accuracy for predicting AD and found the language patterns corresponding to the type of lexical-semantic decline known as 'empty speech', which is regarded as a characteristic of AD." @default.
- W4313241424 created "2023-01-06" @default.
- W4313241424 creator A5001073551 @default.
- W4313241424 creator A5006442129 @default.
- W4313241424 creator A5010459950 @default.
- W4313241424 creator A5019563298 @default.
- W4313241424 creator A5028818051 @default.
- W4313241424 creator A5029457170 @default.
- W4313241424 creator A5033519257 @default.
- W4313241424 creator A5042076430 @default.
- W4313241424 creator A5068761307 @default.
- W4313241424 date "2023-02-08" @default.
- W4313241424 modified "2023-09-26" @default.
- W4313241424 title "Language patterns in Japanese patients with Alzheimer disease: A machine learning approach" @default.
- W4313241424 cites W1663984431 @default.
- W4313241424 cites W1847168837 @default.
- W4313241424 cites W1853705225 @default.
- W4313241424 cites W1877570817 @default.
- W4313241424 cites W1934117767 @default.
- W4313241424 cites W1973779045 @default.
- W4313241424 cites W1974300727 @default.
- W4313241424 cites W1979492588 @default.
- W4313241424 cites W1982341565 @default.
- W4313241424 cites W1993160095 @default.
- W4313241424 cites W1993571512 @default.
- W4313241424 cites W2006676204 @default.
- W4313241424 cites W2008301592 @default.
- W4313241424 cites W2010176747 @default.
- W4313241424 cites W2020348177 @default.
- W4313241424 cites W2036162736 @default.
- W4313241424 cites W2039421157 @default.
- W4313241424 cites W2052950175 @default.
- W4313241424 cites W2054007740 @default.
- W4313241424 cites W2054279472 @default.
- W4313241424 cites W2061211429 @default.
- W4313241424 cites W2070913242 @default.
- W4313241424 cites W2071031592 @default.
- W4313241424 cites W2085275087 @default.
- W4313241424 cites W2085430113 @default.
- W4313241424 cites W2085851888 @default.
- W4313241424 cites W2091122245 @default.
- W4313241424 cites W2094061585 @default.
- W4313241424 cites W2098030271 @default.
- W4313241424 cites W2103440561 @default.
- W4313241424 cites W2103775136 @default.
- W4313241424 cites W2104901197 @default.
- W4313241424 cites W2112224561 @default.
- W4313241424 cites W2115017507 @default.
- W4313241424 cites W2116348077 @default.
- W4313241424 cites W2122328291 @default.
- W4313241424 cites W2122474268 @default.
- W4313241424 cites W2131720165 @default.
- W4313241424 cites W2134836371 @default.
- W4313241424 cites W2135417772 @default.
- W4313241424 cites W2140060226 @default.
- W4313241424 cites W2152892024 @default.
- W4313241424 cites W2154633730 @default.
- W4313241424 cites W2156220037 @default.
- W4313241424 cites W2158090607 @default.
- W4313241424 cites W2165840723 @default.
- W4313241424 cites W2252171711 @default.
- W4313241424 cites W2324543148 @default.
- W4313241424 cites W2327547544 @default.
- W4313241424 cites W2383013545 @default.
- W4313241424 cites W2425660695 @default.
- W4313241424 cites W2594844191 @default.
- W4313241424 cites W2604585698 @default.
- W4313241424 cites W2763470121 @default.
- W4313241424 cites W2793398224 @default.
- W4313241424 cites W2801987007 @default.
- W4313241424 cites W2803666255 @default.
- W4313241424 cites W2884430236 @default.
- W4313241424 cites W2886871786 @default.
- W4313241424 cites W2889320648 @default.
- W4313241424 cites W2898569419 @default.
- W4313241424 cites W2911498515 @default.
- W4313241424 cites W2913125520 @default.
- W4313241424 cites W2980693448 @default.
- W4313241424 cites W3004274611 @default.
- W4313241424 cites W3023888046 @default.
- W4313241424 cites W3026334026 @default.
- W4313241424 cites W3050290117 @default.
- W4313241424 cites W3093546635 @default.
- W4313241424 cites W3102476541 @default.
- W4313241424 cites W3137625463 @default.
- W4313241424 cites W3143468504 @default.
- W4313241424 cites W3168517739 @default.
- W4313241424 cites W3182597378 @default.
- W4313241424 cites W3196908729 @default.
- W4313241424 cites W4220751026 @default.
- W4313241424 cites W4280490458 @default.
- W4313241424 cites W4280582492 @default.
- W4313241424 cites W4303859604 @default.
- W4313241424 cites W50650798 @default.
- W4313241424 doi "https://doi.org/10.1111/pcn.13526" @default.
- W4313241424 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36579663" @default.
- W4313241424 hasPublicationYear "2023" @default.
- W4313241424 type Work @default.