Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313241485> ?p ?o ?g. }
Showing items 1 to 94 of
94
with 100 items per page.
- W4313241485 endingPage "6017" @default.
- W4313241485 startingPage "6001" @default.
- W4313241485 abstract "Textual data streams have been extensively used in practical applications where consumers of online products have expressed their views regarding online products. Due to changes in data distribution, commonly referred to as concept drift, mining this data stream is a challenging problem for researchers. The majority of the existing drift detection techniques are based on classification errors, which have higher probabilities of false-positive or missed detections. To improve classification accuracy, there is a need to develop more intuitive detection techniques that can identify a great number of drifts in the data streams. This paper presents an adaptive unsupervised learning technique, an ensemble classifier based on drift detection for opinion mining and sentiment classification. To improve classification performance, this approach uses four different dissimilarity measures to determine the degree of concept drifts in the data stream. Whenever a drift is detected, the proposed method builds and adds a new classifier to the ensemble. To add a new classifier, the total number of classifiers in the ensemble is first checked if the limit is exceeded before the classifier with the least weight is removed from the ensemble. To this end, a weighting mechanism is used to calculate the weight of each classifier, which decides the contribution of each classifier in the final classification results. Several experiments were conducted on real-world datasets and the results were evaluated on the false positive rate, miss detection rate, and accuracy measures. The proposed method is also compared with the state-of-the-art methods, which include DDM, EDDM, and PageHinkley with support vector machine (SVM) and Naïve Bayes classifiers that are frequently used in concept drift detection studies. In all cases, the results show the efficiency of our proposed method." @default.
- W4313241485 created "2023-01-06" @default.
- W4313241485 creator A5012641332 @default.
- W4313241485 creator A5015761017 @default.
- W4313241485 creator A5050278174 @default.
- W4313241485 creator A5074379918 @default.
- W4313241485 creator A5077069116 @default.
- W4313241485 creator A5086958695 @default.
- W4313241485 date "2023-01-01" @default.
- W4313241485 modified "2023-09-30" @default.
- W4313241485 title "Drift Detection Method Using Distance Measures and Windowing Schemes for Sentiment Classification" @default.
- W4313241485 cites W1969288392 @default.
- W4313241485 cites W2073256825 @default.
- W4313241485 cites W2099419573 @default.
- W4313241485 cites W2108059592 @default.
- W4313241485 cites W2215569344 @default.
- W4313241485 cites W2216111627 @default.
- W4313241485 cites W2407188540 @default.
- W4313241485 cites W2528421823 @default.
- W4313241485 cites W2612063921 @default.
- W4313241485 cites W2623618904 @default.
- W4313241485 cites W2794413384 @default.
- W4313241485 cites W2800818180 @default.
- W4313241485 cites W2810128799 @default.
- W4313241485 cites W2891560655 @default.
- W4313241485 cites W2941793573 @default.
- W4313241485 cites W2970143329 @default.
- W4313241485 cites W2986218551 @default.
- W4313241485 cites W3008404034 @default.
- W4313241485 cites W3099492174 @default.
- W4313241485 cites W3165514883 @default.
- W4313241485 cites W3191769560 @default.
- W4313241485 cites W4206268729 @default.
- W4313241485 cites W4255466416 @default.
- W4313241485 doi "https://doi.org/10.32604/cmc.2023.035221" @default.
- W4313241485 hasPublicationYear "2023" @default.
- W4313241485 type Work @default.
- W4313241485 citedByCount "0" @default.
- W4313241485 crossrefType "journal-article" @default.
- W4313241485 hasAuthorship W4313241485A5012641332 @default.
- W4313241485 hasAuthorship W4313241485A5015761017 @default.
- W4313241485 hasAuthorship W4313241485A5050278174 @default.
- W4313241485 hasAuthorship W4313241485A5074379918 @default.
- W4313241485 hasAuthorship W4313241485A5077069116 @default.
- W4313241485 hasAuthorship W4313241485A5086958695 @default.
- W4313241485 hasBestOaLocation W43132414851 @default.
- W4313241485 hasConcept C119857082 @default.
- W4313241485 hasConcept C124101348 @default.
- W4313241485 hasConcept C126838900 @default.
- W4313241485 hasConcept C153180895 @default.
- W4313241485 hasConcept C154945302 @default.
- W4313241485 hasConcept C183115368 @default.
- W4313241485 hasConcept C2778484313 @default.
- W4313241485 hasConcept C41008148 @default.
- W4313241485 hasConcept C45942800 @default.
- W4313241485 hasConcept C60777511 @default.
- W4313241485 hasConcept C71924100 @default.
- W4313241485 hasConcept C76155785 @default.
- W4313241485 hasConcept C89198739 @default.
- W4313241485 hasConcept C95623464 @default.
- W4313241485 hasConceptScore W4313241485C119857082 @default.
- W4313241485 hasConceptScore W4313241485C124101348 @default.
- W4313241485 hasConceptScore W4313241485C126838900 @default.
- W4313241485 hasConceptScore W4313241485C153180895 @default.
- W4313241485 hasConceptScore W4313241485C154945302 @default.
- W4313241485 hasConceptScore W4313241485C183115368 @default.
- W4313241485 hasConceptScore W4313241485C2778484313 @default.
- W4313241485 hasConceptScore W4313241485C41008148 @default.
- W4313241485 hasConceptScore W4313241485C45942800 @default.
- W4313241485 hasConceptScore W4313241485C60777511 @default.
- W4313241485 hasConceptScore W4313241485C71924100 @default.
- W4313241485 hasConceptScore W4313241485C76155785 @default.
- W4313241485 hasConceptScore W4313241485C89198739 @default.
- W4313241485 hasConceptScore W4313241485C95623464 @default.
- W4313241485 hasIssue "3" @default.
- W4313241485 hasLocation W43132414851 @default.
- W4313241485 hasOpenAccess W4313241485 @default.
- W4313241485 hasPrimaryLocation W43132414851 @default.
- W4313241485 hasRelatedWork W1987429824 @default.
- W4313241485 hasRelatedWork W2151673632 @default.
- W4313241485 hasRelatedWork W2167825284 @default.
- W4313241485 hasRelatedWork W2194383319 @default.
- W4313241485 hasRelatedWork W2607131005 @default.
- W4313241485 hasRelatedWork W2613181115 @default.
- W4313241485 hasRelatedWork W2992362249 @default.
- W4313241485 hasRelatedWork W3013949960 @default.
- W4313241485 hasRelatedWork W3108897387 @default.
- W4313241485 hasRelatedWork W4200118895 @default.
- W4313241485 hasVolume "74" @default.
- W4313241485 isParatext "false" @default.
- W4313241485 isRetracted "false" @default.
- W4313241485 workType "article" @default.