Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313241503> ?p ?o ?g. }
Showing items 1 to 89 of
89
with 100 items per page.
- W4313241503 endingPage "4666" @default.
- W4313241503 startingPage "4649" @default.
- W4313241503 abstract "Medical image steganography aims to increase data security by concealing patient-personal information as well as diagnostic and therapeutic data in the spatial or frequency domain of radiological images. On the other hand, the discipline of image steganalysis generally provides a classification based on whether an image has hidden data or not. Inspired by previous studies on image steganalysis, this study proposes a deep ensemble learning model for medical image steganalysis to detect malicious hidden data in medical images and develop medical image steganography methods aimed at securing personal information. With this purpose in mind, a dataset containing brain Magnetic Resonance (MR) images of healthy individuals and epileptic patients was built. Spatial Version of the Universal Wavelet Relative Distortion (S-UNIWARD), Highly Undetectable Stego (HUGO), and Minimizing the Power of Optimal Detector (MIPOD) techniques used in spatial image steganalysis were adapted to the problem, and various payloads of confidential data were hidden in medical images. The architectures of medical image steganalysis networks were transferred separately from eleven Dense Convolutional Network (DenseNet), Residual Neural Network (ResNet), and Inception-based models. The steganalysis outputs of these networks were determined by assembling models separately for each spatial embedding method with different payload ratios. The study demonstrated the success of pre-trained ResNet, DenseNet, and Inception models in the cover-stego mismatch scenario for each hiding technique with different payloads. Due to the high detection accuracy achieved, the proposed model has the potential to lead to the development of novel medical image steganography algorithms that existing deep learning-based steganalysis methods cannot detect. The experiments and the evaluations clearly proved this attempt." @default.
- W4313241503 created "2023-01-06" @default.
- W4313241503 creator A5048687888 @default.
- W4313241503 date "2023-01-01" @default.
- W4313241503 modified "2023-10-01" @default.
- W4313241503 title "MI-STEG: A Medical Image Steganalysis Framework Based on Ensemble Deep Learning" @default.
- W4313241503 cites W1870458554 @default.
- W4313241503 cites W2009130368 @default.
- W4313241503 cites W2102511552 @default.
- W4313241503 cites W2322622188 @default.
- W4313241503 cites W2588463901 @default.
- W4313241503 cites W2621048556 @default.
- W4313241503 cites W2725312425 @default.
- W4313241503 cites W2799386263 @default.
- W4313241503 cites W2892948265 @default.
- W4313241503 cites W2942297038 @default.
- W4313241503 cites W2962949934 @default.
- W4313241503 cites W2963682422 @default.
- W4313241503 cites W2969585684 @default.
- W4313241503 cites W3111851281 @default.
- W4313241503 cites W3124809916 @default.
- W4313241503 cites W3208325817 @default.
- W4313241503 doi "https://doi.org/10.32604/cmc.2023.035881" @default.
- W4313241503 hasPublicationYear "2023" @default.
- W4313241503 type Work @default.
- W4313241503 citedByCount "0" @default.
- W4313241503 crossrefType "journal-article" @default.
- W4313241503 hasAuthorship W4313241503A5048687888 @default.
- W4313241503 hasBestOaLocation W43132415031 @default.
- W4313241503 hasConcept C107368093 @default.
- W4313241503 hasConcept C108583219 @default.
- W4313241503 hasConcept C108801101 @default.
- W4313241503 hasConcept C115961682 @default.
- W4313241503 hasConcept C119857082 @default.
- W4313241503 hasConcept C124101348 @default.
- W4313241503 hasConcept C126780896 @default.
- W4313241503 hasConcept C13179402 @default.
- W4313241503 hasConcept C134066672 @default.
- W4313241503 hasConcept C153180895 @default.
- W4313241503 hasConcept C154945302 @default.
- W4313241503 hasConcept C158379750 @default.
- W4313241503 hasConcept C194257627 @default.
- W4313241503 hasConcept C2776257435 @default.
- W4313241503 hasConcept C31258907 @default.
- W4313241503 hasConcept C31601959 @default.
- W4313241503 hasConcept C31972630 @default.
- W4313241503 hasConcept C38652104 @default.
- W4313241503 hasConcept C41008148 @default.
- W4313241503 hasConcept C81363708 @default.
- W4313241503 hasConceptScore W4313241503C107368093 @default.
- W4313241503 hasConceptScore W4313241503C108583219 @default.
- W4313241503 hasConceptScore W4313241503C108801101 @default.
- W4313241503 hasConceptScore W4313241503C115961682 @default.
- W4313241503 hasConceptScore W4313241503C119857082 @default.
- W4313241503 hasConceptScore W4313241503C124101348 @default.
- W4313241503 hasConceptScore W4313241503C126780896 @default.
- W4313241503 hasConceptScore W4313241503C13179402 @default.
- W4313241503 hasConceptScore W4313241503C134066672 @default.
- W4313241503 hasConceptScore W4313241503C153180895 @default.
- W4313241503 hasConceptScore W4313241503C154945302 @default.
- W4313241503 hasConceptScore W4313241503C158379750 @default.
- W4313241503 hasConceptScore W4313241503C194257627 @default.
- W4313241503 hasConceptScore W4313241503C2776257435 @default.
- W4313241503 hasConceptScore W4313241503C31258907 @default.
- W4313241503 hasConceptScore W4313241503C31601959 @default.
- W4313241503 hasConceptScore W4313241503C31972630 @default.
- W4313241503 hasConceptScore W4313241503C38652104 @default.
- W4313241503 hasConceptScore W4313241503C41008148 @default.
- W4313241503 hasConceptScore W4313241503C81363708 @default.
- W4313241503 hasIssue "3" @default.
- W4313241503 hasLocation W43132415031 @default.
- W4313241503 hasOpenAccess W4313241503 @default.
- W4313241503 hasPrimaryLocation W43132415031 @default.
- W4313241503 hasRelatedWork W2128931933 @default.
- W4313241503 hasRelatedWork W2605121773 @default.
- W4313241503 hasRelatedWork W2752821911 @default.
- W4313241503 hasRelatedWork W3004271471 @default.
- W4313241503 hasRelatedWork W3111851281 @default.
- W4313241503 hasRelatedWork W3128298146 @default.
- W4313241503 hasRelatedWork W3195137965 @default.
- W4313241503 hasRelatedWork W4226334208 @default.
- W4313241503 hasRelatedWork W4293863124 @default.
- W4313241503 hasRelatedWork W4298348888 @default.
- W4313241503 hasVolume "74" @default.
- W4313241503 isParatext "false" @default.
- W4313241503 isRetracted "false" @default.
- W4313241503 workType "article" @default.