Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313241512> ?p ?o ?g. }
Showing items 1 to 99 of
99
with 100 items per page.
- W4313241512 endingPage "6212" @default.
- W4313241512 startingPage "6195" @default.
- W4313241512 abstract "The Coronavirus Disease (COVID-19) pandemic has exposed the vulnerabilities of medical services across the globe, especially in underdeveloped nations. In the aftermath of the COVID-19 outbreak, a strong demand exists for developing novel computer-assisted diagnostic tools to execute rapid and cost-effective screenings in locations where many screenings cannot be executed using conventional methods. Medical imaging has become a crucial component in the disease diagnosis process, whereas X-rays and Computed Tomography (CT) scan imaging are employed in a deep network to diagnose the diseases. In general, four steps are followed in image-based diagnostics and disease classification processes by making use of the neural networks, such as network training, feature extraction, model performance testing and optimal feature selection. The current research article devises a Chaotic Flower Pollination Algorithm with a Deep Learning-Driven Fusion (CFPA-DLDF) approach for detecting and classifying COVID-19. The presented CFPA-DLDF model is developed by integrating two DL models to recognize COVID-19 in medical images. Initially, the proposed CFPA-DLDF technique employs the Gabor Filtering (GF) approach to pre-process the input images. In addition, a weighted voting-based ensemble model is employed for feature extraction, in which both VGG-19 and the MixNet models are included. Finally, the CFPA with Recurrent Neural Network (RNN) model is utilized for classification, showing the work’s novelty. A comparative analysis was conducted to demonstrate the enhanced performance of the proposed CFPA-DLDF model, and the results established the supremacy of the proposed CFPA-DLDF model over recent approaches." @default.
- W4313241512 created "2023-01-06" @default.
- W4313241512 creator A5014774595 @default.
- W4313241512 creator A5015299902 @default.
- W4313241512 creator A5034804192 @default.
- W4313241512 creator A5034896032 @default.
- W4313241512 creator A5063103313 @default.
- W4313241512 creator A5075926625 @default.
- W4313241512 creator A5089828406 @default.
- W4313241512 date "2023-01-01" @default.
- W4313241512 modified "2023-10-14" @default.
- W4313241512 title "Chaotic Flower Pollination with Deep Learning Based COVID-19 Classification Model" @default.
- W4313241512 cites W2476926478 @default.
- W4313241512 cites W2941278538 @default.
- W4313241512 cites W3021921998 @default.
- W4313241512 cites W3032017599 @default.
- W4313241512 cites W3037640857 @default.
- W4313241512 cites W3038925693 @default.
- W4313241512 cites W3083972167 @default.
- W4313241512 cites W3085360812 @default.
- W4313241512 cites W3085376891 @default.
- W4313241512 cites W3126474728 @default.
- W4313241512 cites W3136933888 @default.
- W4313241512 cites W3155197079 @default.
- W4313241512 cites W3158342805 @default.
- W4313241512 cites W3160455160 @default.
- W4313241512 cites W3163893137 @default.
- W4313241512 cites W3170020805 @default.
- W4313241512 cites W3170900500 @default.
- W4313241512 cites W3177416782 @default.
- W4313241512 cites W3184726726 @default.
- W4313241512 cites W3208325817 @default.
- W4313241512 cites W3212240055 @default.
- W4313241512 cites W3217423340 @default.
- W4313241512 cites W4212980161 @default.
- W4313241512 doi "https://doi.org/10.32604/cmc.2023.033252" @default.
- W4313241512 hasPublicationYear "2023" @default.
- W4313241512 type Work @default.
- W4313241512 citedByCount "1" @default.
- W4313241512 countsByYear W43132415122023 @default.
- W4313241512 crossrefType "journal-article" @default.
- W4313241512 hasAuthorship W4313241512A5014774595 @default.
- W4313241512 hasAuthorship W4313241512A5015299902 @default.
- W4313241512 hasAuthorship W4313241512A5034804192 @default.
- W4313241512 hasAuthorship W4313241512A5034896032 @default.
- W4313241512 hasAuthorship W4313241512A5063103313 @default.
- W4313241512 hasAuthorship W4313241512A5075926625 @default.
- W4313241512 hasAuthorship W4313241512A5089828406 @default.
- W4313241512 hasBestOaLocation W43132415121 @default.
- W4313241512 hasConcept C108583219 @default.
- W4313241512 hasConcept C111919701 @default.
- W4313241512 hasConcept C119857082 @default.
- W4313241512 hasConcept C138885662 @default.
- W4313241512 hasConcept C148483581 @default.
- W4313241512 hasConcept C153180895 @default.
- W4313241512 hasConcept C154945302 @default.
- W4313241512 hasConcept C2776401178 @default.
- W4313241512 hasConcept C2777052490 @default.
- W4313241512 hasConcept C31601959 @default.
- W4313241512 hasConcept C41008148 @default.
- W4313241512 hasConcept C41895202 @default.
- W4313241512 hasConcept C50644808 @default.
- W4313241512 hasConcept C52622490 @default.
- W4313241512 hasConcept C98045186 @default.
- W4313241512 hasConceptScore W4313241512C108583219 @default.
- W4313241512 hasConceptScore W4313241512C111919701 @default.
- W4313241512 hasConceptScore W4313241512C119857082 @default.
- W4313241512 hasConceptScore W4313241512C138885662 @default.
- W4313241512 hasConceptScore W4313241512C148483581 @default.
- W4313241512 hasConceptScore W4313241512C153180895 @default.
- W4313241512 hasConceptScore W4313241512C154945302 @default.
- W4313241512 hasConceptScore W4313241512C2776401178 @default.
- W4313241512 hasConceptScore W4313241512C2777052490 @default.
- W4313241512 hasConceptScore W4313241512C31601959 @default.
- W4313241512 hasConceptScore W4313241512C41008148 @default.
- W4313241512 hasConceptScore W4313241512C41895202 @default.
- W4313241512 hasConceptScore W4313241512C50644808 @default.
- W4313241512 hasConceptScore W4313241512C52622490 @default.
- W4313241512 hasConceptScore W4313241512C98045186 @default.
- W4313241512 hasIssue "3" @default.
- W4313241512 hasLocation W43132415121 @default.
- W4313241512 hasOpenAccess W4313241512 @default.
- W4313241512 hasPrimaryLocation W43132415121 @default.
- W4313241512 hasRelatedWork W2546942002 @default.
- W4313241512 hasRelatedWork W4223943233 @default.
- W4313241512 hasRelatedWork W4225161397 @default.
- W4313241512 hasRelatedWork W4297820521 @default.
- W4313241512 hasRelatedWork W4312200629 @default.
- W4313241512 hasRelatedWork W4360585206 @default.
- W4313241512 hasRelatedWork W4364306694 @default.
- W4313241512 hasRelatedWork W4380075502 @default.
- W4313241512 hasRelatedWork W4380086463 @default.
- W4313241512 hasRelatedWork W2345184372 @default.
- W4313241512 hasVolume "74" @default.
- W4313241512 isParatext "false" @default.
- W4313241512 isRetracted "false" @default.
- W4313241512 workType "article" @default.