Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313244369> ?p ?o ?g. }
- W4313244369 endingPage "179" @default.
- W4313244369 startingPage "179" @default.
- W4313244369 abstract "Logistic regression (LR) and artificial intelligence algorithms were used to analyze the risk factors for the early rupture of acute type A aortic dissection (ATAAD). Data from electronic medical records of 200 patients diagnosed with ATAAD from the Department of Emergency of Guangdong Provincial People’s Hospital from April 2012 to March 2017 were collected. Logistic regression and artificial intelligence algorithms were used to establish prediction models, and the prediction effects of four models were analyzed. According to the LR models, we elucidated independent risk factors for ATAAD rupture, which included age > 63 years (odds ratio (OR) = 1.69), female sex (OR = 1.77), ventilator assisted ventilation (OR = 3.05), AST > 80 U/L (OR = 1.59), no distortion of the inner membrane (OR = 1.57), the diameter of the aortic sinus > 41 mm (OR = 0.92), maximum aortic diameter > 48 mm (OR = 1.32), the ratio of false lumen area to true lumen area > 2.12 (OR = 1.94), lactates > 1.9 mmol/L (OR = 2.28), and white blood cell > 14.2 × 109 /L (OR = 1.23). The highest sensitivity and accuracy were found with the convolutional neural network (CNN) model. Its sensitivity was 0.93, specificity was 0.90, and accuracy was 0.90. In this present study, we found that age, sex, select biomarkers, and select morphological parameters of the aorta are independent predictors for the rupture of ATAAD. In terms of predicting the risk of ATAAD, the performance of random forests and CNN is significantly better than LR, but the performance of the support vector machine (SVM) is worse than LR." @default.
- W4313244369 created "2023-01-06" @default.
- W4313244369 creator A5022526821 @default.
- W4313244369 creator A5033829087 @default.
- W4313244369 creator A5044301848 @default.
- W4313244369 creator A5044824598 @default.
- W4313244369 creator A5054304728 @default.
- W4313244369 creator A5057251209 @default.
- W4313244369 creator A5057303331 @default.
- W4313244369 creator A5082556337 @default.
- W4313244369 date "2022-12-26" @default.
- W4313244369 modified "2023-10-18" @default.
- W4313244369 title "Application of Logistic Regression and Artificial Intelligence in the Risk Prediction of Acute Aortic Dissection Rupture" @default.
- W4313244369 cites W2057363015 @default.
- W4313244369 cites W2097888316 @default.
- W4313244369 cites W2159588845 @default.
- W4313244369 cites W2531360867 @default.
- W4313244369 cites W2547301914 @default.
- W4313244369 cites W2613454590 @default.
- W4313244369 cites W2619608293 @default.
- W4313244369 cites W2735974062 @default.
- W4313244369 cites W2801609445 @default.
- W4313244369 cites W2896056014 @default.
- W4313244369 cites W2919115771 @default.
- W4313244369 cites W2955787476 @default.
- W4313244369 cites W2962829974 @default.
- W4313244369 cites W2965640442 @default.
- W4313244369 cites W2981532484 @default.
- W4313244369 cites W2989961964 @default.
- W4313244369 cites W2995574194 @default.
- W4313244369 cites W3005826475 @default.
- W4313244369 cites W3012687466 @default.
- W4313244369 cites W3013078738 @default.
- W4313244369 cites W3094777985 @default.
- W4313244369 cites W3104723631 @default.
- W4313244369 cites W3121065944 @default.
- W4313244369 cites W4292940186 @default.
- W4313244369 doi "https://doi.org/10.3390/jcm12010179" @default.
- W4313244369 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36614979" @default.
- W4313244369 hasPublicationYear "2022" @default.
- W4313244369 type Work @default.
- W4313244369 citedByCount "1" @default.
- W4313244369 countsByYear W43132443692023 @default.
- W4313244369 crossrefType "journal-article" @default.
- W4313244369 hasAuthorship W4313244369A5022526821 @default.
- W4313244369 hasAuthorship W4313244369A5033829087 @default.
- W4313244369 hasAuthorship W4313244369A5044301848 @default.
- W4313244369 hasAuthorship W4313244369A5044824598 @default.
- W4313244369 hasAuthorship W4313244369A5054304728 @default.
- W4313244369 hasAuthorship W4313244369A5057251209 @default.
- W4313244369 hasAuthorship W4313244369A5057303331 @default.
- W4313244369 hasAuthorship W4313244369A5082556337 @default.
- W4313244369 hasBestOaLocation W43132443691 @default.
- W4313244369 hasConcept C118552586 @default.
- W4313244369 hasConcept C119857082 @default.
- W4313244369 hasConcept C126322002 @default.
- W4313244369 hasConcept C131631996 @default.
- W4313244369 hasConcept C141071460 @default.
- W4313244369 hasConcept C151956035 @default.
- W4313244369 hasConcept C156957248 @default.
- W4313244369 hasConcept C164705383 @default.
- W4313244369 hasConcept C169258074 @default.
- W4313244369 hasConcept C2779980429 @default.
- W4313244369 hasConcept C2779993142 @default.
- W4313244369 hasConcept C2780724011 @default.
- W4313244369 hasConcept C41008148 @default.
- W4313244369 hasConcept C71924100 @default.
- W4313244369 hasConceptScore W4313244369C118552586 @default.
- W4313244369 hasConceptScore W4313244369C119857082 @default.
- W4313244369 hasConceptScore W4313244369C126322002 @default.
- W4313244369 hasConceptScore W4313244369C131631996 @default.
- W4313244369 hasConceptScore W4313244369C141071460 @default.
- W4313244369 hasConceptScore W4313244369C151956035 @default.
- W4313244369 hasConceptScore W4313244369C156957248 @default.
- W4313244369 hasConceptScore W4313244369C164705383 @default.
- W4313244369 hasConceptScore W4313244369C169258074 @default.
- W4313244369 hasConceptScore W4313244369C2779980429 @default.
- W4313244369 hasConceptScore W4313244369C2779993142 @default.
- W4313244369 hasConceptScore W4313244369C2780724011 @default.
- W4313244369 hasConceptScore W4313244369C41008148 @default.
- W4313244369 hasConceptScore W4313244369C71924100 @default.
- W4313244369 hasIssue "1" @default.
- W4313244369 hasLocation W43132443691 @default.
- W4313244369 hasLocation W43132443692 @default.
- W4313244369 hasLocation W43132443693 @default.
- W4313244369 hasOpenAccess W4313244369 @default.
- W4313244369 hasPrimaryLocation W43132443691 @default.
- W4313244369 hasRelatedWork W1595541952 @default.
- W4313244369 hasRelatedWork W1977348040 @default.
- W4313244369 hasRelatedWork W1978932927 @default.
- W4313244369 hasRelatedWork W1986240140 @default.
- W4313244369 hasRelatedWork W2021020211 @default.
- W4313244369 hasRelatedWork W2169848835 @default.
- W4313244369 hasRelatedWork W2419623461 @default.
- W4313244369 hasRelatedWork W2914276787 @default.
- W4313244369 hasRelatedWork W3041300656 @default.
- W4313244369 hasRelatedWork W4234515472 @default.
- W4313244369 hasVolume "12" @default.