Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313244841> ?p ?o ?g. }
- W4313244841 endingPage "106" @default.
- W4313244841 startingPage "106" @default.
- W4313244841 abstract "In the southeastern US, Atlanta is always the focus of attention, despite the rapid expansion of small and medium-sized cities (SMSCs) in the region. Clearly, larger cities have more people, resulting in more loss during disasters. However, SMSCs also face natural calamities and must be made robust and sustainable. Keeping this in mind, this study chooses to focus on ten SMSCs in Alabama (Population > 40,000) which have encountered at least a 6% increase in population size between 1990 and 2020, out of which two large cities (Population > 180,000) which experienced loss during the same time. This paper examines the change in urban built-up area between 1990 and 2020 using the random forest algorithm in Google Earth Engine (GEE) and estimates future 2050 urban expansion scenarios using the Cellular Automata (CA) Markov model in TerrSet’s Land Change Modeler (LCM). The results revealed urban built-up areas grew rapidly from 1990 to 2020, with some cities doubling or tripling in size due to population growth. The future growth model predicted growth for most cities and urban expansion along transportation networks. The outcome of this research showcases the importance of proper planning and building sustainably in SMSCs for future natural disaster events." @default.
- W4313244841 created "2023-01-06" @default.
- W4313244841 creator A5008294488 @default.
- W4313244841 creator A5015357847 @default.
- W4313244841 creator A5024364878 @default.
- W4313244841 creator A5037071272 @default.
- W4313244841 date "2022-12-25" @default.
- W4313244841 modified "2023-09-27" @default.
- W4313244841 title "Mapping and Predicting Land Cover Changes of Small and Medium Size Cities in Alabama Using Machine Learning Techniques" @default.
- W4313244841 cites W1824683756 @default.
- W4313244841 cites W1983406956 @default.
- W4313244841 cites W1986496156 @default.
- W4313244841 cites W1987044199 @default.
- W4313244841 cites W1990179486 @default.
- W4313244841 cites W2019452249 @default.
- W4313244841 cites W2026736178 @default.
- W4313244841 cites W2029294727 @default.
- W4313244841 cites W2036632898 @default.
- W4313244841 cites W2039356283 @default.
- W4313244841 cites W2042967898 @default.
- W4313244841 cites W2043009944 @default.
- W4313244841 cites W2044609898 @default.
- W4313244841 cites W2051512952 @default.
- W4313244841 cites W2060041035 @default.
- W4313244841 cites W2065313484 @default.
- W4313244841 cites W2066363435 @default.
- W4313244841 cites W2066390752 @default.
- W4313244841 cites W2074420136 @default.
- W4313244841 cites W2075144732 @default.
- W4313244841 cites W2077509829 @default.
- W4313244841 cites W2085778674 @default.
- W4313244841 cites W2094153102 @default.
- W4313244841 cites W2101678239 @default.
- W4313244841 cites W2152881008 @default.
- W4313244841 cites W2153989276 @default.
- W4313244841 cites W2165320196 @default.
- W4313244841 cites W2221544163 @default.
- W4313244841 cites W2591853304 @default.
- W4313244841 cites W2593007382 @default.
- W4313244841 cites W2793327769 @default.
- W4313244841 cites W2811511299 @default.
- W4313244841 cites W2884260323 @default.
- W4313244841 cites W2893744532 @default.
- W4313244841 cites W2997112584 @default.
- W4313244841 cites W3005001892 @default.
- W4313244841 cites W3039489895 @default.
- W4313244841 cites W3045585619 @default.
- W4313244841 cites W3047107171 @default.
- W4313244841 cites W3097588392 @default.
- W4313244841 cites W3106378566 @default.
- W4313244841 cites W3114653318 @default.
- W4313244841 cites W3147347244 @default.
- W4313244841 cites W4200221593 @default.
- W4313244841 cites W4224310009 @default.
- W4313244841 cites W4299823775 @default.
- W4313244841 doi "https://doi.org/10.3390/rs15010106" @default.
- W4313244841 hasPublicationYear "2022" @default.
- W4313244841 type Work @default.
- W4313244841 citedByCount "1" @default.
- W4313244841 countsByYear W43132448412023 @default.
- W4313244841 crossrefType "journal-article" @default.
- W4313244841 hasAuthorship W4313244841A5008294488 @default.
- W4313244841 hasAuthorship W4313244841A5015357847 @default.
- W4313244841 hasAuthorship W4313244841A5024364878 @default.
- W4313244841 hasAuthorship W4313244841A5037071272 @default.
- W4313244841 hasBestOaLocation W43132448411 @default.
- W4313244841 hasConcept C127040729 @default.
- W4313244841 hasConcept C127413603 @default.
- W4313244841 hasConcept C136264566 @default.
- W4313244841 hasConcept C144024400 @default.
- W4313244841 hasConcept C147176958 @default.
- W4313244841 hasConcept C149923435 @default.
- W4313244841 hasConcept C153294291 @default.
- W4313244841 hasConcept C154945302 @default.
- W4313244841 hasConcept C162324750 @default.
- W4313244841 hasConcept C166566181 @default.
- W4313244841 hasConcept C205649164 @default.
- W4313244841 hasConcept C26271046 @default.
- W4313244841 hasConcept C2780648208 @default.
- W4313244841 hasConcept C2908647359 @default.
- W4313244841 hasConcept C2984674859 @default.
- W4313244841 hasConcept C35527583 @default.
- W4313244841 hasConcept C39853841 @default.
- W4313244841 hasConcept C41008148 @default.
- W4313244841 hasConcept C4792198 @default.
- W4313244841 hasConcept C50522688 @default.
- W4313244841 hasConcept C77352025 @default.
- W4313244841 hasConceptScore W4313244841C127040729 @default.
- W4313244841 hasConceptScore W4313244841C127413603 @default.
- W4313244841 hasConceptScore W4313244841C136264566 @default.
- W4313244841 hasConceptScore W4313244841C144024400 @default.
- W4313244841 hasConceptScore W4313244841C147176958 @default.
- W4313244841 hasConceptScore W4313244841C149923435 @default.
- W4313244841 hasConceptScore W4313244841C153294291 @default.
- W4313244841 hasConceptScore W4313244841C154945302 @default.
- W4313244841 hasConceptScore W4313244841C162324750 @default.
- W4313244841 hasConceptScore W4313244841C166566181 @default.
- W4313244841 hasConceptScore W4313244841C205649164 @default.