Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313244857> ?p ?o ?g. }
- W4313244857 endingPage "46" @default.
- W4313244857 startingPage "46" @default.
- W4313244857 abstract "In recent years, forest fires have become an important issue in Central Europe. To model the probability of the occurrence of forest fires in the Lower Silesian Voivodeship of Poland, historical fire data and several types of predictors were collected or generated, including topographic, vegetation, climatic, and anthropogenic features. The main objectives of this study were to determine the importance of the predictors of forest fire occurrence and to map the probability of forest fire occurrence. The H2O driverless artificial intelligence (DAI) cloud platform was used to model forest fire probability. The gradient boosted machine (GBM) and random forest (RF) methods were applied to assess the probability of forest fire occurrence. Evaluation the importance of the variables was performed using the H2O platform permutation method. The most important variables were the presence of coniferous forest and the distance to agricultural land according to the GBM and RF methods, respectively. Model validation was conducted using receiver operating characteristic (ROC) analysis. The areas under the curve (AUCs) of the ROC plots from the GBM and RF models were 83.3% and 81.3%, respectively. Based on the results obtained, the GBM model can be recommended for the mapping of forest fire occurrence in the study area." @default.
- W4313244857 created "2023-01-06" @default.
- W4313244857 creator A5005448356 @default.
- W4313244857 creator A5006518270 @default.
- W4313244857 creator A5014413887 @default.
- W4313244857 creator A5029414081 @default.
- W4313244857 creator A5033079875 @default.
- W4313244857 creator A5035511256 @default.
- W4313244857 creator A5048870803 @default.
- W4313244857 creator A5051181910 @default.
- W4313244857 creator A5058358667 @default.
- W4313244857 creator A5062780850 @default.
- W4313244857 date "2022-12-26" @default.
- W4313244857 modified "2023-09-27" @default.
- W4313244857 title "Modeling and Mapping of Forest Fire Occurrence in the Lower Silesian Voivodeship of Poland Based on Machine Learning Methods" @default.
- W4313244857 cites W1485823330 @default.
- W4313244857 cites W1770686706 @default.
- W4313244857 cites W1974844467 @default.
- W4313244857 cites W1978732192 @default.
- W4313244857 cites W1981246689 @default.
- W4313244857 cites W1982314817 @default.
- W4313244857 cites W1986149296 @default.
- W4313244857 cites W1997204954 @default.
- W4313244857 cites W2000994041 @default.
- W4313244857 cites W2002529334 @default.
- W4313244857 cites W2004647733 @default.
- W4313244857 cites W2014740640 @default.
- W4313244857 cites W2017410010 @default.
- W4313244857 cites W2019510146 @default.
- W4313244857 cites W2040545878 @default.
- W4313244857 cites W2041960396 @default.
- W4313244857 cites W2049651579 @default.
- W4313244857 cites W205275964 @default.
- W4313244857 cites W2076812056 @default.
- W4313244857 cites W2082379296 @default.
- W4313244857 cites W2084341220 @default.
- W4313244857 cites W2089922300 @default.
- W4313244857 cites W2100697007 @default.
- W4313244857 cites W2101788542 @default.
- W4313244857 cites W2108136229 @default.
- W4313244857 cites W2109906104 @default.
- W4313244857 cites W2110674786 @default.
- W4313244857 cites W2113508837 @default.
- W4313244857 cites W2126835201 @default.
- W4313244857 cites W2185224927 @default.
- W4313244857 cites W2193194994 @default.
- W4313244857 cites W2275605338 @default.
- W4313244857 cites W2334806815 @default.
- W4313244857 cites W2344736925 @default.
- W4313244857 cites W2488204701 @default.
- W4313244857 cites W2498119267 @default.
- W4313244857 cites W2587934354 @default.
- W4313244857 cites W2593911157 @default.
- W4313244857 cites W2596011944 @default.
- W4313244857 cites W2601486684 @default.
- W4313244857 cites W2633478868 @default.
- W4313244857 cites W2782182518 @default.
- W4313244857 cites W2788915030 @default.
- W4313244857 cites W2898737263 @default.
- W4313244857 cites W2942735585 @default.
- W4313244857 cites W2944366268 @default.
- W4313244857 cites W2959564300 @default.
- W4313244857 cites W2964406534 @default.
- W4313244857 cites W2981019283 @default.
- W4313244857 cites W2982898846 @default.
- W4313244857 cites W3037984908 @default.
- W4313244857 cites W3099079911 @default.
- W4313244857 cites W3100430072 @default.
- W4313244857 cites W3104895181 @default.
- W4313244857 cites W3113635604 @default.
- W4313244857 cites W3114980604 @default.
- W4313244857 cites W3123604524 @default.
- W4313244857 cites W3123993379 @default.
- W4313244857 cites W3160301286 @default.
- W4313244857 cites W3166182933 @default.
- W4313244857 cites W3166536399 @default.
- W4313244857 cites W3167781802 @default.
- W4313244857 cites W3167825790 @default.
- W4313244857 cites W3180944546 @default.
- W4313244857 cites W3194956593 @default.
- W4313244857 cites W3203869461 @default.
- W4313244857 cites W3212012583 @default.
- W4313244857 cites W3214709230 @default.
- W4313244857 cites W4200612379 @default.
- W4313244857 cites W4205088754 @default.
- W4313244857 cites W4206645239 @default.
- W4313244857 cites W4212977212 @default.
- W4313244857 cites W4220857626 @default.
- W4313244857 cites W4223588139 @default.
- W4313244857 cites W4281628349 @default.
- W4313244857 cites W4281635321 @default.
- W4313244857 cites W4282980526 @default.
- W4313244857 cites W4289519529 @default.
- W4313244857 cites W4289942786 @default.
- W4313244857 cites W4292729637 @default.
- W4313244857 cites W4293237477 @default.
- W4313244857 cites W4296100801 @default.
- W4313244857 cites W429766147 @default.