Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313244966> ?p ?o ?g. }
- W4313244966 endingPage "105" @default.
- W4313244966 startingPage "105" @default.
- W4313244966 abstract "Soil erosion is a global environmental problem. The rapid monitoring of the coverage changes in and spatial patterns of photosynthetic vegetation (PV) and non-photosynthetic vegetation (NPV) at regional scales can help improve the accuracy of soil erosion evaluations. Three deep learning semantic segmentation models, DeepLabV3+, PSPNet, and U-Net, are often used to extract features from unmanned aerial vehicle (UAV) images; however, their extraction processes are highly dependent on the assignment of massive data labels, which greatly limits their applicability. At the same time, numerous shadows are present in UAV images. It is not clear whether the shaded features can be further classified, nor how much accuracy can be achieved. This study took the Mu Us Desert in northern China as an example with which to explore the feasibility and efficiency of shadow-sensitive PV/NPV classification using the three models. Using the object-oriented classification technique alongside manual correction, 728 labels were produced for deep learning PV/NVP semantic segmentation. ResNet 50 was selected as the backbone network with which to train the sample data. Three models were used in the study; the overall accuracy (OA), the kappa coefficient, and the orthogonal statistic were applied to evaluate their accuracy and efficiency. The results showed that, for six characteristics, the three models achieved OAs of 88.3–91.9% and kappa coefficients of 0.81–0.87. The DeepLabV3+ model was superior, and its accuracy for PV and bare soil (BS) under light conditions exceeded 95%; for the three categories of PV/NPV/BS, it achieved an OA of 94.3% and a kappa coefficient of 0.90, performing slightly better (by ~2.6% (OA) and ~0.05 (kappa coefficient)) than the other two models. The DeepLabV3+ model and corresponding labels were tested in other sites for the same types of features: it achieved OAs of 93.9–95.9% and kappa coefficients of 0.88–0.92. Compared with traditional machine learning methods, such as random forest, the proposed method not only offers a marked improvement in classification accuracy but also realizes the semiautomatic extraction of PV/NPV areas. The results will be useful for land-use planning and land resource management in the areas." @default.
- W4313244966 created "2023-01-06" @default.
- W4313244966 creator A5020007852 @default.
- W4313244966 creator A5028780316 @default.
- W4313244966 creator A5029486815 @default.
- W4313244966 creator A5031998885 @default.
- W4313244966 creator A5035982212 @default.
- W4313244966 creator A5053652399 @default.
- W4313244966 creator A5058555426 @default.
- W4313244966 creator A5073860895 @default.
- W4313244966 creator A5083265825 @default.
- W4313244966 date "2022-12-25" @default.
- W4313244966 modified "2023-10-16" @default.
- W4313244966 title "Combining Object-Oriented and Deep Learning Methods to Estimate Photosynthetic and Non-Photosynthetic Vegetation Cover in the Desert from Unmanned Aerial Vehicle Images with Consideration of Shadows" @default.
- W4313244966 cites W1997478538 @default.
- W4313244966 cites W2000228855 @default.
- W4313244966 cites W2019070464 @default.
- W4313244966 cites W2042348866 @default.
- W4313244966 cites W2051764040 @default.
- W4313244966 cites W2066416082 @default.
- W4313244966 cites W2074120853 @default.
- W4313244966 cites W2085527057 @default.
- W4313244966 cites W2098676252 @default.
- W4313244966 cites W2109255472 @default.
- W4313244966 cites W2150462953 @default.
- W4313244966 cites W2150489395 @default.
- W4313244966 cites W2412782625 @default.
- W4313244966 cites W2499316477 @default.
- W4313244966 cites W2560023338 @default.
- W4313244966 cites W2595754769 @default.
- W4313244966 cites W2740634481 @default.
- W4313244966 cites W2773589087 @default.
- W4313244966 cites W2790737320 @default.
- W4313244966 cites W2886554959 @default.
- W4313244966 cites W2911433502 @default.
- W4313244966 cites W2921277556 @default.
- W4313244966 cites W2921499963 @default.
- W4313244966 cites W2936307272 @default.
- W4313244966 cites W2949381166 @default.
- W4313244966 cites W2950604226 @default.
- W4313244966 cites W2963136578 @default.
- W4313244966 cites W2963268125 @default.
- W4313244966 cites W2963881378 @default.
- W4313244966 cites W2979348177 @default.
- W4313244966 cites W3009017987 @default.
- W4313244966 cites W3018425007 @default.
- W4313244966 cites W3033552957 @default.
- W4313244966 cites W3049655825 @default.
- W4313244966 cites W3110414814 @default.
- W4313244966 cites W3124539583 @default.
- W4313244966 cites W3128788661 @default.
- W4313244966 cites W3136950817 @default.
- W4313244966 cites W3159606890 @default.
- W4313244966 cites W4213442994 @default.
- W4313244966 cites W4285585573 @default.
- W4313244966 cites W4292454763 @default.
- W4313244966 cites W4295532968 @default.
- W4313244966 cites W4295532983 @default.
- W4313244966 doi "https://doi.org/10.3390/rs15010105" @default.
- W4313244966 hasPublicationYear "2022" @default.
- W4313244966 type Work @default.
- W4313244966 citedByCount "3" @default.
- W4313244966 countsByYear W43132449662023 @default.
- W4313244966 crossrefType "journal-article" @default.
- W4313244966 hasAuthorship W4313244966A5020007852 @default.
- W4313244966 hasAuthorship W4313244966A5028780316 @default.
- W4313244966 hasAuthorship W4313244966A5029486815 @default.
- W4313244966 hasAuthorship W4313244966A5031998885 @default.
- W4313244966 hasAuthorship W4313244966A5035982212 @default.
- W4313244966 hasAuthorship W4313244966A5053652399 @default.
- W4313244966 hasAuthorship W4313244966A5058555426 @default.
- W4313244966 hasAuthorship W4313244966A5073860895 @default.
- W4313244966 hasAuthorship W4313244966A5083265825 @default.
- W4313244966 hasBestOaLocation W43132449661 @default.
- W4313244966 hasConcept C119857082 @default.
- W4313244966 hasConcept C127313418 @default.
- W4313244966 hasConcept C142724271 @default.
- W4313244966 hasConcept C153180895 @default.
- W4313244966 hasConcept C154945302 @default.
- W4313244966 hasConcept C163864269 @default.
- W4313244966 hasConcept C2776133958 @default.
- W4313244966 hasConcept C39432304 @default.
- W4313244966 hasConcept C41008148 @default.
- W4313244966 hasConcept C62649853 @default.
- W4313244966 hasConcept C71924100 @default.
- W4313244966 hasConcept C89600930 @default.
- W4313244966 hasConceptScore W4313244966C119857082 @default.
- W4313244966 hasConceptScore W4313244966C127313418 @default.
- W4313244966 hasConceptScore W4313244966C142724271 @default.
- W4313244966 hasConceptScore W4313244966C153180895 @default.
- W4313244966 hasConceptScore W4313244966C154945302 @default.
- W4313244966 hasConceptScore W4313244966C163864269 @default.
- W4313244966 hasConceptScore W4313244966C2776133958 @default.
- W4313244966 hasConceptScore W4313244966C39432304 @default.
- W4313244966 hasConceptScore W4313244966C41008148 @default.
- W4313244966 hasConceptScore W4313244966C62649853 @default.
- W4313244966 hasConceptScore W4313244966C71924100 @default.
- W4313244966 hasConceptScore W4313244966C89600930 @default.