Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313245004> ?p ?o ?g. }
Showing items 1 to 93 of
93
with 100 items per page.
- W4313245004 endingPage "204" @default.
- W4313245004 startingPage "204" @default.
- W4313245004 abstract "Even with the ubiquitous sensing data in intelligent transportation systems, such as the mobile sensing of vehicle trajectories, traffic estimation is still faced with the data missing problem due to the detector faults or limited number of probe vehicles as mobile sensors. Such data missing issue poses an obstacle for many further explorations, e.g., the link-based traffic status modeling. Although many studies have focused on tackling this kind of problem, existing studies mainly focus on the situation in which data are missing at random and ignore the distinction between links of missing data. In the practical scenario, traffic speed data are always missing not at random (MNAR). The distinction for recovering missing data on different links has not been studied yet. In this paper, we propose a general linear model based on probabilistic principal component analysis (PPCA) for solving MNAR traffic speed data imputation. Furthermore, we propose a metric, i.e., Pearson score (p-score), for distinguishing links and investigate how the model performs on links with different p-score values. Experimental results show that the new model outperforms the typically used PPCA model, and missing data on links with higher p-score values can be better recovered." @default.
- W4313245004 created "2023-01-06" @default.
- W4313245004 creator A5019144076 @default.
- W4313245004 creator A5021933790 @default.
- W4313245004 creator A5085887280 @default.
- W4313245004 creator A5086810513 @default.
- W4313245004 date "2022-12-25" @default.
- W4313245004 modified "2023-09-25" @default.
- W4313245004 title "Missing Traffic Data Imputation with a Linear Generative Model Based on Probabilistic Principal Component Analysis" @default.
- W4313245004 cites W1979646154 @default.
- W4313245004 cites W2026561823 @default.
- W4313245004 cites W2100056901 @default.
- W4313245004 cites W2125027820 @default.
- W4313245004 cites W2163150789 @default.
- W4313245004 cites W2343462218 @default.
- W4313245004 cites W2782753316 @default.
- W4313245004 cites W2885930230 @default.
- W4313245004 cites W3034951560 @default.
- W4313245004 cites W3094477683 @default.
- W4313245004 cites W3125675327 @default.
- W4313245004 cites W3157605589 @default.
- W4313245004 cites W3163836068 @default.
- W4313245004 cites W3167341124 @default.
- W4313245004 cites W3202635391 @default.
- W4313245004 cites W4287846131 @default.
- W4313245004 cites W4308080620 @default.
- W4313245004 doi "https://doi.org/10.3390/s23010204" @default.
- W4313245004 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36616802" @default.
- W4313245004 hasPublicationYear "2022" @default.
- W4313245004 type Work @default.
- W4313245004 citedByCount "0" @default.
- W4313245004 crossrefType "journal-article" @default.
- W4313245004 hasAuthorship W4313245004A5019144076 @default.
- W4313245004 hasAuthorship W4313245004A5021933790 @default.
- W4313245004 hasAuthorship W4313245004A5085887280 @default.
- W4313245004 hasAuthorship W4313245004A5086810513 @default.
- W4313245004 hasBestOaLocation W43132450041 @default.
- W4313245004 hasConcept C114289077 @default.
- W4313245004 hasConcept C119857082 @default.
- W4313245004 hasConcept C120665830 @default.
- W4313245004 hasConcept C121332964 @default.
- W4313245004 hasConcept C124101348 @default.
- W4313245004 hasConcept C154945302 @default.
- W4313245004 hasConcept C167966045 @default.
- W4313245004 hasConcept C192209626 @default.
- W4313245004 hasConcept C27438332 @default.
- W4313245004 hasConcept C39890363 @default.
- W4313245004 hasConcept C41008148 @default.
- W4313245004 hasConcept C49937458 @default.
- W4313245004 hasConcept C58041806 @default.
- W4313245004 hasConcept C67186912 @default.
- W4313245004 hasConcept C77088390 @default.
- W4313245004 hasConcept C9357733 @default.
- W4313245004 hasConceptScore W4313245004C114289077 @default.
- W4313245004 hasConceptScore W4313245004C119857082 @default.
- W4313245004 hasConceptScore W4313245004C120665830 @default.
- W4313245004 hasConceptScore W4313245004C121332964 @default.
- W4313245004 hasConceptScore W4313245004C124101348 @default.
- W4313245004 hasConceptScore W4313245004C154945302 @default.
- W4313245004 hasConceptScore W4313245004C167966045 @default.
- W4313245004 hasConceptScore W4313245004C192209626 @default.
- W4313245004 hasConceptScore W4313245004C27438332 @default.
- W4313245004 hasConceptScore W4313245004C39890363 @default.
- W4313245004 hasConceptScore W4313245004C41008148 @default.
- W4313245004 hasConceptScore W4313245004C49937458 @default.
- W4313245004 hasConceptScore W4313245004C58041806 @default.
- W4313245004 hasConceptScore W4313245004C67186912 @default.
- W4313245004 hasConceptScore W4313245004C77088390 @default.
- W4313245004 hasConceptScore W4313245004C9357733 @default.
- W4313245004 hasIssue "1" @default.
- W4313245004 hasLocation W43132450041 @default.
- W4313245004 hasLocation W43132450042 @default.
- W4313245004 hasLocation W43132450043 @default.
- W4313245004 hasLocation W43132450044 @default.
- W4313245004 hasLocation W43132450045 @default.
- W4313245004 hasOpenAccess W4313245004 @default.
- W4313245004 hasPrimaryLocation W43132450041 @default.
- W4313245004 hasRelatedWork W2026561823 @default.
- W4313245004 hasRelatedWork W2043246077 @default.
- W4313245004 hasRelatedWork W2287055320 @default.
- W4313245004 hasRelatedWork W2541565311 @default.
- W4313245004 hasRelatedWork W2979641641 @default.
- W4313245004 hasRelatedWork W2994560360 @default.
- W4313245004 hasRelatedWork W3049453136 @default.
- W4313245004 hasRelatedWork W3136396548 @default.
- W4313245004 hasRelatedWork W4284688182 @default.
- W4313245004 hasRelatedWork W4285147743 @default.
- W4313245004 hasVolume "23" @default.
- W4313245004 isParatext "false" @default.
- W4313245004 isRetracted "false" @default.
- W4313245004 workType "article" @default.