Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313245280> ?p ?o ?g. }
Showing items 1 to 92 of
92
with 100 items per page.
- W4313245280 endingPage "56" @default.
- W4313245280 startingPage "56" @default.
- W4313245280 abstract "Leaf water content (LWC) is one of the important indicators of crop health. It plays an important role in the physiological process of leaves, participates in almost all physiological processes of crops, and is of great significance to the survival and growth of crops. Based on the hyperspectral (350–1350 nm) and LWC data (jointing, booting, flowering, and filling periods) of winter wheat in 2020 and 2021, this work proposed to transform and process the hyperspectral data by adopting fractional order differential and continuous wavelet transform, and took a differential spectrum, wavelet coefficients, and mixed variables (differential spectrum and wavelet coefficients) as input variables of the model and adopted Gaussian process regression (GPR), classification and regression decision tree (CART), and artificial neural network (ANN) methods to estimate the LWC of wheat in different growth periods. The results indicated that fractional differential and continuous wavelet transform could highlight the spectral characteristics of winter wheat canopy and improve its correlation with LWC. The three model variables had the best estimation effect on LWC in the flowering period, and the average values of R2 were 0.86 and 0.87 in modeling and verification, which indicated that the flowering period could be used as the best estimation period for LWC. Compared with the differential spectrum and wavelet coefficients, LWC estimation based on mixed variables performed best. The average values of R2 in modeling and verification were 0.78 and 0.79. Among them, the ANN model had the highest estimation accuracy, and the R2 in modeling and verification could reach 0.92 and 0.91. This showed that fractional differential and continuous wavelet transform could effectively promote the sensitivity of spectral information to LWC and enhance the prediction ability and stability of wheat LWC. The outcomes of the present study have the potential to provide new ideas for the water monitoring of crops." @default.
- W4313245280 created "2023-01-06" @default.
- W4313245280 creator A5000067263 @default.
- W4313245280 creator A5007361731 @default.
- W4313245280 creator A5027109363 @default.
- W4313245280 creator A5033383677 @default.
- W4313245280 creator A5044246694 @default.
- W4313245280 creator A5055820540 @default.
- W4313245280 creator A5063481738 @default.
- W4313245280 creator A5064878896 @default.
- W4313245280 creator A5075448214 @default.
- W4313245280 creator A5084640863 @default.
- W4313245280 creator A5087240958 @default.
- W4313245280 date "2022-12-23" @default.
- W4313245280 modified "2023-09-26" @default.
- W4313245280 title "Hyperspectral Estimation of Winter Wheat Leaf Water Content Based on Fractional Order Differentiation and Continuous Wavelet Transform" @default.
- W4313245280 cites W1826962995 @default.
- W4313245280 cites W1964391202 @default.
- W4313245280 cites W2009409575 @default.
- W4313245280 cites W2066676880 @default.
- W4313245280 cites W2070174008 @default.
- W4313245280 cites W2095162528 @default.
- W4313245280 cites W2560291307 @default.
- W4313245280 cites W2784201940 @default.
- W4313245280 cites W3167673713 @default.
- W4313245280 cites W3176270994 @default.
- W4313245280 cites W3206503361 @default.
- W4313245280 cites W4200257808 @default.
- W4313245280 cites W4211049957 @default.
- W4313245280 cites W4288757743 @default.
- W4313245280 doi "https://doi.org/10.3390/agronomy13010056" @default.
- W4313245280 hasPublicationYear "2022" @default.
- W4313245280 type Work @default.
- W4313245280 citedByCount "1" @default.
- W4313245280 countsByYear W43132452802023 @default.
- W4313245280 crossrefType "journal-article" @default.
- W4313245280 hasAuthorship W4313245280A5000067263 @default.
- W4313245280 hasAuthorship W4313245280A5007361731 @default.
- W4313245280 hasAuthorship W4313245280A5027109363 @default.
- W4313245280 hasAuthorship W4313245280A5033383677 @default.
- W4313245280 hasAuthorship W4313245280A5044246694 @default.
- W4313245280 hasAuthorship W4313245280A5055820540 @default.
- W4313245280 hasAuthorship W4313245280A5063481738 @default.
- W4313245280 hasAuthorship W4313245280A5064878896 @default.
- W4313245280 hasAuthorship W4313245280A5075448214 @default.
- W4313245280 hasAuthorship W4313245280A5084640863 @default.
- W4313245280 hasAuthorship W4313245280A5087240958 @default.
- W4313245280 hasBestOaLocation W43132452801 @default.
- W4313245280 hasConcept C101000010 @default.
- W4313245280 hasConcept C105795698 @default.
- W4313245280 hasConcept C154945302 @default.
- W4313245280 hasConcept C159078339 @default.
- W4313245280 hasConcept C196216189 @default.
- W4313245280 hasConcept C33923547 @default.
- W4313245280 hasConcept C41008148 @default.
- W4313245280 hasConcept C47432892 @default.
- W4313245280 hasConcept C59822182 @default.
- W4313245280 hasConcept C83546350 @default.
- W4313245280 hasConcept C86803240 @default.
- W4313245280 hasConceptScore W4313245280C101000010 @default.
- W4313245280 hasConceptScore W4313245280C105795698 @default.
- W4313245280 hasConceptScore W4313245280C154945302 @default.
- W4313245280 hasConceptScore W4313245280C159078339 @default.
- W4313245280 hasConceptScore W4313245280C196216189 @default.
- W4313245280 hasConceptScore W4313245280C33923547 @default.
- W4313245280 hasConceptScore W4313245280C41008148 @default.
- W4313245280 hasConceptScore W4313245280C47432892 @default.
- W4313245280 hasConceptScore W4313245280C59822182 @default.
- W4313245280 hasConceptScore W4313245280C83546350 @default.
- W4313245280 hasConceptScore W4313245280C86803240 @default.
- W4313245280 hasFunder F4320321001 @default.
- W4313245280 hasIssue "1" @default.
- W4313245280 hasLocation W43132452801 @default.
- W4313245280 hasLocation W43132452802 @default.
- W4313245280 hasOpenAccess W4313245280 @default.
- W4313245280 hasPrimaryLocation W43132452801 @default.
- W4313245280 hasRelatedWork W1480602009 @default.
- W4313245280 hasRelatedWork W1903188181 @default.
- W4313245280 hasRelatedWork W1982728038 @default.
- W4313245280 hasRelatedWork W2031946693 @default.
- W4313245280 hasRelatedWork W2354628690 @default.
- W4313245280 hasRelatedWork W2410176045 @default.
- W4313245280 hasRelatedWork W2735766205 @default.
- W4313245280 hasRelatedWork W2765596918 @default.
- W4313245280 hasRelatedWork W2943436523 @default.
- W4313245280 hasRelatedWork W4224306206 @default.
- W4313245280 hasVolume "13" @default.
- W4313245280 isParatext "false" @default.
- W4313245280 isRetracted "false" @default.
- W4313245280 workType "article" @default.