Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313246338> ?p ?o ?g. }
Showing items 1 to 66 of
66
with 100 items per page.
- W4313246338 endingPage "936" @default.
- W4313246338 startingPage "927" @default.
- W4313246338 abstract "Predicting conceptual costs is among the essential criteria in project decision-making at the early stages of civil engineering disciplines. The cost estimation model availability that may help in the early stages of a project could be incredibly advantageous in respect of cost alternatives and more extraordinary cost-effective solutions periodically. There is a lack of case datasets. Most of the proposed dataset was inefficient. This study offers a new data set that includes the elements of road construction and economic advantages in the year of project construction. Real project data for rural roads in the State of Iraq / Diyala Governorate for the years 2012 to 2021 have use to train a predictive model with a high rate of accuracy based on machine learning (ML) methods. Ridge and Least Absolute Shrinkage and Selection Operator (LASSO) Regressions, K Nearest Neighbors (k-NN), and Random Forest (RF) algorithms have employ to create models for estimating road construction costs based on real-world data. The Root Mean Square Error (RMSE), Mean Absolute Percentage Error (MAPE), and R-squared (R2) coefficient of determination are utilize to assess the models' performance. The analysis indicated that the RR is the best model for road construction costs, with results R2 = 1.0, MAPE =0.00, and RMSE=0.00. The results showed that the cost estimates were accurate and aligned with the project bids." @default.
- W4313246338 created "2023-01-06" @default.
- W4313246338 creator A5008561572 @default.
- W4313246338 creator A5035858152 @default.
- W4313246338 creator A5063956201 @default.
- W4313246338 date "2022-12-21" @default.
- W4313246338 modified "2023-10-10" @default.
- W4313246338 title "Cost Prediction for Roads Construction using Machine Learning Models" @default.
- W4313246338 doi "https://doi.org/10.32985/ijeces.13.10.8" @default.
- W4313246338 hasPublicationYear "2022" @default.
- W4313246338 type Work @default.
- W4313246338 citedByCount "1" @default.
- W4313246338 crossrefType "journal-article" @default.
- W4313246338 hasAuthorship W4313246338A5008561572 @default.
- W4313246338 hasAuthorship W4313246338A5035858152 @default.
- W4313246338 hasAuthorship W4313246338A5063956201 @default.
- W4313246338 hasBestOaLocation W43132463381 @default.
- W4313246338 hasConcept C105795698 @default.
- W4313246338 hasConcept C119857082 @default.
- W4313246338 hasConcept C124101348 @default.
- W4313246338 hasConcept C127413603 @default.
- W4313246338 hasConcept C136764020 @default.
- W4313246338 hasConcept C139945424 @default.
- W4313246338 hasConcept C150217764 @default.
- W4313246338 hasConcept C169258074 @default.
- W4313246338 hasConcept C201995342 @default.
- W4313246338 hasConcept C33923547 @default.
- W4313246338 hasConcept C37616216 @default.
- W4313246338 hasConcept C41008148 @default.
- W4313246338 hasConcept C45804977 @default.
- W4313246338 hasConcept C93983250 @default.
- W4313246338 hasConceptScore W4313246338C105795698 @default.
- W4313246338 hasConceptScore W4313246338C119857082 @default.
- W4313246338 hasConceptScore W4313246338C124101348 @default.
- W4313246338 hasConceptScore W4313246338C127413603 @default.
- W4313246338 hasConceptScore W4313246338C136764020 @default.
- W4313246338 hasConceptScore W4313246338C139945424 @default.
- W4313246338 hasConceptScore W4313246338C150217764 @default.
- W4313246338 hasConceptScore W4313246338C169258074 @default.
- W4313246338 hasConceptScore W4313246338C201995342 @default.
- W4313246338 hasConceptScore W4313246338C33923547 @default.
- W4313246338 hasConceptScore W4313246338C37616216 @default.
- W4313246338 hasConceptScore W4313246338C41008148 @default.
- W4313246338 hasConceptScore W4313246338C45804977 @default.
- W4313246338 hasConceptScore W4313246338C93983250 @default.
- W4313246338 hasIssue "10" @default.
- W4313246338 hasLocation W43132463381 @default.
- W4313246338 hasLocation W43132463382 @default.
- W4313246338 hasOpenAccess W4313246338 @default.
- W4313246338 hasPrimaryLocation W43132463381 @default.
- W4313246338 hasRelatedWork W2991486385 @default.
- W4313246338 hasRelatedWork W3038246389 @default.
- W4313246338 hasRelatedWork W3045793201 @default.
- W4313246338 hasRelatedWork W3203808047 @default.
- W4313246338 hasRelatedWork W3206479590 @default.
- W4313246338 hasRelatedWork W4293203128 @default.
- W4313246338 hasRelatedWork W4313246338 @default.
- W4313246338 hasRelatedWork W4313478509 @default.
- W4313246338 hasRelatedWork W4322746700 @default.
- W4313246338 hasRelatedWork W4324044519 @default.
- W4313246338 hasVolume "13" @default.
- W4313246338 isParatext "false" @default.
- W4313246338 isRetracted "false" @default.
- W4313246338 workType "article" @default.