Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313246351> ?p ?o ?g. }
Showing items 1 to 78 of
78
with 100 items per page.
- W4313246351 endingPage "267" @default.
- W4313246351 startingPage "267" @default.
- W4313246351 abstract "Employee attrition is a major problem that causes many companies to incur in significant costs to find and hire new personnel. The use of machine learning and artificial intelligence methods to predict the likelihood of resignation of an employee, and the quitting causes, can provide HR departments with a valuable decision support system and, as a result, prevent a large waste of time and resources. In this paper, we propose a preliminary exploratory analysis of the application of machine learning methodologies for employee attrition prediction. We compared several classification models with the goal of finding the one that not only performs best, but is also well interpretable, in order to provide companies with the possibility of improving those aspects that have been shown to produce the quitting of their employees. Among the proposed methods, Logistic Regression performs the best, with an accuracy of 88% and an AUC-ROC of 85%." @default.
- W4313246351 created "2023-01-06" @default.
- W4313246351 creator A5018615713 @default.
- W4313246351 creator A5056395410 @default.
- W4313246351 date "2022-12-26" @default.
- W4313246351 modified "2023-09-25" @default.
- W4313246351 title "A Comparison of Machine Learning Approaches for Predicting Employee Attrition" @default.
- W4313246351 cites W1534477342 @default.
- W4313246351 cites W2116341502 @default.
- W4313246351 cites W2158698691 @default.
- W4313246351 cites W2498119267 @default.
- W4313246351 cites W2518963095 @default.
- W4313246351 cites W2909056357 @default.
- W4313246351 cites W2911964244 @default.
- W4313246351 cites W2919115771 @default.
- W4313246351 cites W2945976633 @default.
- W4313246351 cites W2953307007 @default.
- W4313246351 cites W2978631110 @default.
- W4313246351 cites W2990283237 @default.
- W4313246351 cites W3041378136 @default.
- W4313246351 cites W3043239278 @default.
- W4313246351 cites W3095632750 @default.
- W4313246351 cites W3116607539 @default.
- W4313246351 cites W3124870602 @default.
- W4313246351 cites W3127255635 @default.
- W4313246351 cites W3193062375 @default.
- W4313246351 cites W3204857902 @default.
- W4313246351 cites W4229739501 @default.
- W4313246351 cites W4286568264 @default.
- W4313246351 doi "https://doi.org/10.3390/app13010267" @default.
- W4313246351 hasPublicationYear "2022" @default.
- W4313246351 type Work @default.
- W4313246351 citedByCount "0" @default.
- W4313246351 crossrefType "journal-article" @default.
- W4313246351 hasAuthorship W4313246351A5018615713 @default.
- W4313246351 hasAuthorship W4313246351A5056395410 @default.
- W4313246351 hasBestOaLocation W43132463511 @default.
- W4313246351 hasConcept C10138342 @default.
- W4313246351 hasConcept C119857082 @default.
- W4313246351 hasConcept C144133560 @default.
- W4313246351 hasConcept C151956035 @default.
- W4313246351 hasConcept C154945302 @default.
- W4313246351 hasConcept C182306322 @default.
- W4313246351 hasConcept C199343813 @default.
- W4313246351 hasConcept C2780553607 @default.
- W4313246351 hasConcept C41008148 @default.
- W4313246351 hasConcept C71924100 @default.
- W4313246351 hasConceptScore W4313246351C10138342 @default.
- W4313246351 hasConceptScore W4313246351C119857082 @default.
- W4313246351 hasConceptScore W4313246351C144133560 @default.
- W4313246351 hasConceptScore W4313246351C151956035 @default.
- W4313246351 hasConceptScore W4313246351C154945302 @default.
- W4313246351 hasConceptScore W4313246351C182306322 @default.
- W4313246351 hasConceptScore W4313246351C199343813 @default.
- W4313246351 hasConceptScore W4313246351C2780553607 @default.
- W4313246351 hasConceptScore W4313246351C41008148 @default.
- W4313246351 hasConceptScore W4313246351C71924100 @default.
- W4313246351 hasIssue "1" @default.
- W4313246351 hasLocation W43132463511 @default.
- W4313246351 hasLocation W43132463512 @default.
- W4313246351 hasOpenAccess W4313246351 @default.
- W4313246351 hasPrimaryLocation W43132463511 @default.
- W4313246351 hasRelatedWork W1488523695 @default.
- W4313246351 hasRelatedWork W2042484890 @default.
- W4313246351 hasRelatedWork W2961085424 @default.
- W4313246351 hasRelatedWork W4285260836 @default.
- W4313246351 hasRelatedWork W4286629047 @default.
- W4313246351 hasRelatedWork W4306321456 @default.
- W4313246351 hasRelatedWork W4306674287 @default.
- W4313246351 hasRelatedWork W4308495742 @default.
- W4313246351 hasRelatedWork W4385192715 @default.
- W4313246351 hasRelatedWork W4224009465 @default.
- W4313246351 hasVolume "13" @default.
- W4313246351 isParatext "false" @default.
- W4313246351 isRetracted "false" @default.
- W4313246351 workType "article" @default.