Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313246886> ?p ?o ?g. }
- W4313246886 endingPage "13" @default.
- W4313246886 startingPage "13" @default.
- W4313246886 abstract "The intense increase in air pollution caused by vehicular emissions is one of the main causes of changing weather patterns and deteriorating health conditions. Furthermore, renewable energy sources, such as solar, wind, and biofuels, suffer from weather and supply chain-related uncertainties. The electric vehicles’ powered energy, stored in a battery, offers an attractive option to overcome emissions and uncertainties to a certain extent. The development and implementation of cutting-edge electric vehicles (EVs) with long driving ranges, safety, and higher reliability have been identified as critical to decarbonizing the transportation sector. Nonetheless, capacity deteriorating with time and usage, environmental degradation factors, and end-of-life repurposing pose significant challenges to the usage of lithium-ion batteries. In this aspect, determining a battery’s remaining usable life (RUL) establishes its efficacy. It also aids in the testing and development of various EV upgrades by identifying factors that will increase and improve their efficiency. Several nonlinear and complicated parameters are involved in the process. Machine learning (ML) methodologies have proven to be a promising tool for optimizing and modeling engineering challenges in this domain (non-linearity and complexity). In contrast to the scalability and temporal limits of battery degeneration, ML techniques provide a non-invasive solution with excellent accuracy and minimal processing. Based on recent research, this study presents an objective and comprehensive evaluation of these challenges. RUL estimations are explained in detail, including examples of its approach and applicability. Furthermore, many ML techniques for RUL evaluation are thoroughly and individually studied. Finally, an application-focused overview is offered, emphasizing the advantages in terms of efficiency and accuracy." @default.
- W4313246886 created "2023-01-06" @default.
- W4313246886 creator A5003625164 @default.
- W4313246886 creator A5030585958 @default.
- W4313246886 date "2022-12-25" @default.
- W4313246886 modified "2023-10-01" @default.
- W4313246886 title "A Review of Modern Machine Learning Techniques in the Prediction of Remaining Useful Life of Lithium-Ion Batteries" @default.
- W4313246886 cites W1490191241 @default.
- W4313246886 cites W1628954589 @default.
- W4313246886 cites W2012716743 @default.
- W4313246886 cites W2012956714 @default.
- W4313246886 cites W2013694678 @default.
- W4313246886 cites W2027651442 @default.
- W4313246886 cites W2038012452 @default.
- W4313246886 cites W2079078736 @default.
- W4313246886 cites W2090977144 @default.
- W4313246886 cites W2135695572 @default.
- W4313246886 cites W2215994231 @default.
- W4313246886 cites W2281100108 @default.
- W4313246886 cites W2530688094 @default.
- W4313246886 cites W2607617398 @default.
- W4313246886 cites W2610219179 @default.
- W4313246886 cites W2765716825 @default.
- W4313246886 cites W2772978762 @default.
- W4313246886 cites W2774791859 @default.
- W4313246886 cites W2910439791 @default.
- W4313246886 cites W2920879126 @default.
- W4313246886 cites W2921358399 @default.
- W4313246886 cites W2935877504 @default.
- W4313246886 cites W2942851257 @default.
- W4313246886 cites W2968862935 @default.
- W4313246886 cites W2969616191 @default.
- W4313246886 cites W2970885557 @default.
- W4313246886 cites W2980391885 @default.
- W4313246886 cites W2996089053 @default.
- W4313246886 cites W2999979614 @default.
- W4313246886 cites W3006041466 @default.
- W4313246886 cites W3008397052 @default.
- W4313246886 cites W3009652674 @default.
- W4313246886 cites W3018344542 @default.
- W4313246886 cites W3032512766 @default.
- W4313246886 cites W3038724951 @default.
- W4313246886 cites W3039673966 @default.
- W4313246886 cites W3041582919 @default.
- W4313246886 cites W3044127739 @default.
- W4313246886 cites W3093590773 @default.
- W4313246886 cites W3102476541 @default.
- W4313246886 cites W3104795042 @default.
- W4313246886 cites W3109916648 @default.
- W4313246886 cites W3115867105 @default.
- W4313246886 cites W3121332873 @default.
- W4313246886 cites W3122086316 @default.
- W4313246886 cites W3124266898 @default.
- W4313246886 cites W3126720980 @default.
- W4313246886 cites W3126807826 @default.
- W4313246886 cites W3129039771 @default.
- W4313246886 cites W3133856657 @default.
- W4313246886 cites W3134016629 @default.
- W4313246886 cites W3135148600 @default.
- W4313246886 cites W3135351349 @default.
- W4313246886 cites W3136033096 @default.
- W4313246886 cites W3149695768 @default.
- W4313246886 cites W3157504749 @default.
- W4313246886 cites W3159147525 @default.
- W4313246886 cites W3160048565 @default.
- W4313246886 cites W3169203486 @default.
- W4313246886 cites W3169854270 @default.
- W4313246886 cites W3180300883 @default.
- W4313246886 cites W3184853819 @default.
- W4313246886 cites W3185631424 @default.
- W4313246886 cites W3194373144 @default.
- W4313246886 cites W3194752328 @default.
- W4313246886 cites W3195413013 @default.
- W4313246886 cites W3196366936 @default.
- W4313246886 cites W3196819979 @default.
- W4313246886 cites W3197619714 @default.
- W4313246886 cites W3199959176 @default.
- W4313246886 cites W3206685809 @default.
- W4313246886 cites W3207484978 @default.
- W4313246886 cites W3210858739 @default.
- W4313246886 cites W3216627126 @default.
- W4313246886 cites W4200061747 @default.
- W4313246886 cites W4200125209 @default.
- W4313246886 cites W4200410278 @default.
- W4313246886 cites W4200419221 @default.
- W4313246886 cites W4200431045 @default.
- W4313246886 cites W4200453228 @default.
- W4313246886 cites W4205220696 @default.
- W4313246886 cites W4205943930 @default.
- W4313246886 cites W4205948434 @default.
- W4313246886 cites W4205988943 @default.
- W4313246886 cites W4206060259 @default.
- W4313246886 cites W4206330483 @default.
- W4313246886 cites W4210506727 @default.
- W4313246886 cites W4212930661 @default.
- W4313246886 cites W4213030023 @default.
- W4313246886 cites W4213326240 @default.
- W4313246886 cites W4220882630 @default.