Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313247133> ?p ?o ?g. }
Showing items 1 to 84 of
84
with 100 items per page.
- W4313247133 endingPage "424" @default.
- W4313247133 startingPage "417" @default.
- W4313247133 abstract "OBJECTIVE Knowledge of the manufacturer of the previously implanted pedicle screw systems prior to revision spinal surgery may facilitate faster and safer surgery. Often, this information is unavailable because patients are referred by other centers or because of missing information in the patients’ records. Recently, machine learning and computer vision have gained wider use in clinical applications. The authors propose a computer vision approach to classify posterior thoracolumbar instrumentation systems. METHODS Lateral and anteroposterior (AP) radiographs obtained in patients undergoing posterior thoracolumbar pedicle screw implantation for any indication at the authors’ institution (2015–2021) were obtained. DICOM images were cropped to include both the pedicle screws and rods. Images were labeled with the manufacturer according to the operative record. Multiple feature detection methods were tested (SURF, MESR, and Minimum Eigenvalues); however, the bag-of-visual-words technique with KAZE feature detection was ultimately used to construct a computer vision support vector machine (SVM) classifier for lateral, AP, and fused lateral and AP images. Accuracy was tested using an 80%/20% training/testing pseudorandom split over 100 iterations. Using a reader study, the authors compared the model performance with the current practice of surgeons and manufacturer representatives identifying spinal hardware by visual inspection. RESULTS Among the three image types, 355 lateral, 379 AP, and 338 fused radiographs were obtained. The five pedicle screw implants included in this study were the Globus Medical Creo, Medtronic Solera, NuVasive Reline, Stryker Xia, and DePuy Expedium. When the two most common manufacturers used at the authors’ institution were binarily classified (Globus Medical and Medtronic), the accuracy rates for lateral, AP, and fused images were 93.15% ± 4.06%, 88.98% ± 4.08%, and 91.08% ± 5.30%, respectively. Classification accuracy decreased by approximately 10% with each additional manufacturer added. The multilevel five-way classification accuracy rates for lateral, AP, and fused images were 64.27% ± 5.13%, 60.95% ± 5.52%, and 65.90% ± 5.14%, respectively. In the reader study, the model performed five-way classification on 100 test images with 79% accuracy in 14 seconds, compared with an average of 44% accuracy in 20 minutes for two surgeons and three manufacturer representatives. CONCLUSIONS The authors developed a KAZE feature detector with an SVM classifier that successfully identified posterior thoracolumbar hardware at five-level classification. The model performed more accurately and efficiently than the method currently used in clinical practice. The relative computational simplicity of this model, from input to output, may facilitate future prospective studies in the clinical setting." @default.
- W4313247133 created "2023-01-06" @default.
- W4313247133 creator A5005858236 @default.
- W4313247133 creator A5006655560 @default.
- W4313247133 creator A5036814532 @default.
- W4313247133 creator A5040376233 @default.
- W4313247133 creator A5052770525 @default.
- W4313247133 creator A5085670069 @default.
- W4313247133 date "2023-04-01" @default.
- W4313247133 modified "2023-10-05" @default.
- W4313247133 title "A computer vision approach to identifying the manufacturer of posterior thoracolumbar instrumentation systems" @default.
- W4313247133 cites W1589729077 @default.
- W4313247133 cites W2592929672 @default.
- W4313247133 cites W2760880057 @default.
- W4313247133 cites W2761529114 @default.
- W4313247133 cites W2786907498 @default.
- W4313247133 cites W2792828140 @default.
- W4313247133 cites W2891952629 @default.
- W4313247133 cites W2894016974 @default.
- W4313247133 cites W2896817483 @default.
- W4313247133 cites W2905810301 @default.
- W4313247133 cites W2966977115 @default.
- W4313247133 cites W2971471193 @default.
- W4313247133 cites W3048848678 @default.
- W4313247133 cites W3070313384 @default.
- W4313247133 cites W3127303079 @default.
- W4313247133 cites W3180051401 @default.
- W4313247133 cites W3181889135 @default.
- W4313247133 doi "https://doi.org/10.3171/2022.11.spine221009" @default.
- W4313247133 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36681945" @default.
- W4313247133 hasPublicationYear "2023" @default.
- W4313247133 type Work @default.
- W4313247133 citedByCount "0" @default.
- W4313247133 crossrefType "journal-article" @default.
- W4313247133 hasAuthorship W4313247133A5005858236 @default.
- W4313247133 hasAuthorship W4313247133A5006655560 @default.
- W4313247133 hasAuthorship W4313247133A5036814532 @default.
- W4313247133 hasAuthorship W4313247133A5040376233 @default.
- W4313247133 hasAuthorship W4313247133A5052770525 @default.
- W4313247133 hasAuthorship W4313247133A5085670069 @default.
- W4313247133 hasBestOaLocation W43132471331 @default.
- W4313247133 hasConcept C126838900 @default.
- W4313247133 hasConcept C138885662 @default.
- W4313247133 hasConcept C142724271 @default.
- W4313247133 hasConcept C154945302 @default.
- W4313247133 hasConcept C2776401178 @default.
- W4313247133 hasConcept C2780674532 @default.
- W4313247133 hasConcept C36454342 @default.
- W4313247133 hasConcept C41008148 @default.
- W4313247133 hasConcept C41895202 @default.
- W4313247133 hasConcept C71924100 @default.
- W4313247133 hasConcept C77331912 @default.
- W4313247133 hasConceptScore W4313247133C126838900 @default.
- W4313247133 hasConceptScore W4313247133C138885662 @default.
- W4313247133 hasConceptScore W4313247133C142724271 @default.
- W4313247133 hasConceptScore W4313247133C154945302 @default.
- W4313247133 hasConceptScore W4313247133C2776401178 @default.
- W4313247133 hasConceptScore W4313247133C2780674532 @default.
- W4313247133 hasConceptScore W4313247133C36454342 @default.
- W4313247133 hasConceptScore W4313247133C41008148 @default.
- W4313247133 hasConceptScore W4313247133C41895202 @default.
- W4313247133 hasConceptScore W4313247133C71924100 @default.
- W4313247133 hasConceptScore W4313247133C77331912 @default.
- W4313247133 hasIssue "4" @default.
- W4313247133 hasLocation W43132471331 @default.
- W4313247133 hasLocation W43132471332 @default.
- W4313247133 hasOpenAccess W4313247133 @default.
- W4313247133 hasPrimaryLocation W43132471331 @default.
- W4313247133 hasRelatedWork W1568701304 @default.
- W4313247133 hasRelatedWork W1988052614 @default.
- W4313247133 hasRelatedWork W2049214470 @default.
- W4313247133 hasRelatedWork W2068226258 @default.
- W4313247133 hasRelatedWork W2411545073 @default.
- W4313247133 hasRelatedWork W4230773746 @default.
- W4313247133 hasRelatedWork W4235484761 @default.
- W4313247133 hasRelatedWork W4250549352 @default.
- W4313247133 hasRelatedWork W4322722608 @default.
- W4313247133 hasRelatedWork W4386041617 @default.
- W4313247133 hasVolume "38" @default.
- W4313247133 isParatext "false" @default.
- W4313247133 isRetracted "false" @default.
- W4313247133 workType "article" @default.