Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313247274> ?p ?o ?g. }
- W4313247274 endingPage "248" @default.
- W4313247274 startingPage "248" @default.
- W4313247274 abstract "The detection of crowd density levels and anomalies is a hot topic in video surveillance. Especially in human-centric action and activity-based movements. In some respects, the density level variation is considered an anomaly in the event. Crowd behaviour identification relies on a computer-vision-based approach and basically deals with spatial information of foreground video information. In this work, we focused on a deep-learning-based attention-oriented classification system for identifying several basic movements in public places, especially, human flock movement, sudden motion changes and panic events in several indoor and outdoor places. The important spatial features were extracted from a bilinear CNN and a multicolumn multistage CNN with preprocessed morphological video frames from videos. Finally, the abnormal and crowd density estimation was distinguished by using an attention feature combined with a multilayer CNN feature by modifying the fully connected layer for several categories (binary and multiclass). We validate the proposed method on several video surveillance datasets including PETS2009, UMN and UCSD. The proposed method achieved an accuracy of 98.62, 98.95, 96.97, 99.10 and 98.38 on the UCSD Ped1, UCSD Ped2, PETS2009, UMN Plaza1 and UMN Plaza2 datasets, respectively, with the different pretrained models. We compared the performance between recent modern approaches and the proposed method (MCMS-BCNN-Attention) and achieved the highest accuracy. The anomaly detection performance on the UMN and PETS2009 datasets was compared with that of a state-of-the-art method and achieved the best AUC results as 0.9953 and 1.00 for both scenarios, respectively, with a binary classification." @default.
- W4313247274 created "2023-01-06" @default.
- W4313247274 creator A5030144058 @default.
- W4313247274 creator A5041490965 @default.
- W4313247274 creator A5043601315 @default.
- W4313247274 date "2022-12-25" @default.
- W4313247274 modified "2023-09-26" @default.
- W4313247274 title "Crowd Density Level Estimation and Anomaly Detection Using Multicolumn Multistage Bilinear Convolution Attention Network (MCMS-BCNN-Attention)" @default.
- W4313247274 cites W1984296425 @default.
- W4313247274 cites W1998519563 @default.
- W4313247274 cites W2012931101 @default.
- W4313247274 cites W2033810668 @default.
- W4313247274 cites W2058907003 @default.
- W4313247274 cites W2080044827 @default.
- W4313247274 cites W2104657103 @default.
- W4313247274 cites W2155653793 @default.
- W4313247274 cites W2200373309 @default.
- W4313247274 cites W2341058432 @default.
- W4313247274 cites W2463631526 @default.
- W4313247274 cites W2476588267 @default.
- W4313247274 cites W2527524734 @default.
- W4313247274 cites W2591619575 @default.
- W4313247274 cites W2602388965 @default.
- W4313247274 cites W2609486023 @default.
- W4313247274 cites W2753526808 @default.
- W4313247274 cites W2759341202 @default.
- W4313247274 cites W2770354778 @default.
- W4313247274 cites W2801347069 @default.
- W4313247274 cites W2888204521 @default.
- W4313247274 cites W2892624882 @default.
- W4313247274 cites W2902346196 @default.
- W4313247274 cites W2923550938 @default.
- W4313247274 cites W2963446712 @default.
- W4313247274 cites W2963465695 @default.
- W4313247274 cites W2963795951 @default.
- W4313247274 cites W2964014730 @default.
- W4313247274 cites W2970186699 @default.
- W4313247274 cites W2970269396 @default.
- W4313247274 cites W2970645682 @default.
- W4313247274 cites W2987228832 @default.
- W4313247274 cites W3002045291 @default.
- W4313247274 cites W3041540936 @default.
- W4313247274 cites W3045692700 @default.
- W4313247274 cites W3126294508 @default.
- W4313247274 cites W3148708966 @default.
- W4313247274 cites W3159819154 @default.
- W4313247274 cites W4206574198 @default.
- W4313247274 cites W4291825285 @default.
- W4313247274 cites W946771493 @default.
- W4313247274 doi "https://doi.org/10.3390/app13010248" @default.
- W4313247274 hasPublicationYear "2022" @default.
- W4313247274 type Work @default.
- W4313247274 citedByCount "1" @default.
- W4313247274 countsByYear W43132472742023 @default.
- W4313247274 crossrefType "journal-article" @default.
- W4313247274 hasAuthorship W4313247274A5030144058 @default.
- W4313247274 hasAuthorship W4313247274A5041490965 @default.
- W4313247274 hasAuthorship W4313247274A5043601315 @default.
- W4313247274 hasBestOaLocation W43132472741 @default.
- W4313247274 hasConcept C105795698 @default.
- W4313247274 hasConcept C138885662 @default.
- W4313247274 hasConcept C153180895 @default.
- W4313247274 hasConcept C154945302 @default.
- W4313247274 hasConcept C185429906 @default.
- W4313247274 hasConcept C189508267 @default.
- W4313247274 hasConcept C205203396 @default.
- W4313247274 hasConcept C2776401178 @default.
- W4313247274 hasConcept C31972630 @default.
- W4313247274 hasConcept C33923547 @default.
- W4313247274 hasConcept C41008148 @default.
- W4313247274 hasConcept C41895202 @default.
- W4313247274 hasConcept C739882 @default.
- W4313247274 hasConcept C81363708 @default.
- W4313247274 hasConceptScore W4313247274C105795698 @default.
- W4313247274 hasConceptScore W4313247274C138885662 @default.
- W4313247274 hasConceptScore W4313247274C153180895 @default.
- W4313247274 hasConceptScore W4313247274C154945302 @default.
- W4313247274 hasConceptScore W4313247274C185429906 @default.
- W4313247274 hasConceptScore W4313247274C189508267 @default.
- W4313247274 hasConceptScore W4313247274C205203396 @default.
- W4313247274 hasConceptScore W4313247274C2776401178 @default.
- W4313247274 hasConceptScore W4313247274C31972630 @default.
- W4313247274 hasConceptScore W4313247274C33923547 @default.
- W4313247274 hasConceptScore W4313247274C41008148 @default.
- W4313247274 hasConceptScore W4313247274C41895202 @default.
- W4313247274 hasConceptScore W4313247274C739882 @default.
- W4313247274 hasConceptScore W4313247274C81363708 @default.
- W4313247274 hasFunder F4320321001 @default.
- W4313247274 hasIssue "1" @default.
- W4313247274 hasLocation W43132472741 @default.
- W4313247274 hasLocation W43132472742 @default.
- W4313247274 hasOpenAccess W4313247274 @default.
- W4313247274 hasPrimaryLocation W43132472741 @default.
- W4313247274 hasRelatedWork W1504288058 @default.
- W4313247274 hasRelatedWork W2017205855 @default.
- W4313247274 hasRelatedWork W2048505601 @default.
- W4313247274 hasRelatedWork W2076520961 @default.
- W4313247274 hasRelatedWork W2167293474 @default.