Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313249905> ?p ?o ?g. }
- W4313249905 abstract "Abstract Background Severe acute respiratory syndrome coronavirus 2 causes coronavirus disease 19 (COVID-19). The number of confirmed cases of COVID-19 is also rapidly increasing worldwide, posing a significant challenge to human safety. Asthma is a risk factor for COVID-19, but the underlying molecular mechanisms of the asthma–COVID-19 interaction remain unclear. Methods We used transcriptome analysis to discover molecular biomarkers common to asthma and COVID-19. Gene Expression Omnibus database RNA-seq datasets (GSE195599 and GSE196822) were used to identify differentially expressed genes (DEGs) in asthma and COVID-19 patients. After intersecting the differentially expressed mRNAs, Gene Ontology (GO) and Kyoto Encyclopedia of Genes and Genomes (KEGG) enrichment analyses were performed to identify the common pathogenic molecular mechanism. Bioinformatic methods were used to construct protein–protein interaction (PPI) networks and identify key genes from the networks. An online database was used to predict interactions between transcription factors and key genes. The differentially expressed long noncoding RNAs (lncRNAs) in the GSE195599 and GSE196822 datasets were intersected to construct a competing endogenous RNA (ceRNA) regulatory network. Interaction networks were constructed for key genes with RNA-binding proteins (RBPs) and oxidative stress-related proteins. The diagnostic efficacy of key genes in COVID-19 was verified with the GSE171110 dataset. The differential expression of key genes in asthma was verified with the GSE69683 dataset. An asthma cell model was established with interleukins (IL-4, IL-13 and IL-17A) and transfected with siRNA-CXCR1. The role of CXCR1 in asthma development was preliminarily confirmed. Results By intersecting the differentially expressed genes for COVID-19 and asthma, 393 common DEGs were obtained. GO and KEGG enrichment analyses of the DEGs showed that they mainly affected inflammation-, cytokine- and immune-related functions and inflammation-related signaling pathways. By analyzing the PPI network, we obtained 10 key genes: TLR4, TLR2, MMP9, EGF, HCK, FCGR2A, SELP, NFKBIA, CXCR1, and SELL. By intersecting the differentially expressed lncRNAs for COVID-19 and asthma, 13 common differentially expressed lncRNAs were obtained. LncRNAs that regulated microRNAs (miRNAs) were mainly concentrated in intercellular signal transduction, apoptosis, immunity and other related functional pathways. The ceRNA network suggested that there were a variety of regulatory miRNAs and lncRNAs upstream of the key genes. The key genes could also bind a variety of RBPs and oxidative stress-related genes. The key genes also had good diagnostic value in the verification set. In the validation set, the expression of key genes was statistically significant in both the COVID-19 group and the asthma group compared with the healthy control group. CXCR1 expression was upregulated in asthma cell models, and interference with CXCR1 expression significantly reduced cell viability. Conclusions Key genes may become diagnostic and predictive biomarkers of outcomes in COVID-19 and asthma." @default.
- W4313249905 created "2023-01-06" @default.
- W4313249905 creator A5002417571 @default.
- W4313249905 creator A5014394467 @default.
- W4313249905 creator A5018742393 @default.
- W4313249905 creator A5023419105 @default.
- W4313249905 creator A5044367029 @default.
- W4313249905 creator A5053702872 @default.
- W4313249905 creator A5079594267 @default.
- W4313249905 creator A5080931779 @default.
- W4313249905 date "2022-12-27" @default.
- W4313249905 modified "2023-10-16" @default.
- W4313249905 title "Bioinformatic analysis and preliminary validation of potential therapeutic targets for COVID-19 infection in asthma patients" @default.
- W4313249905 cites W2046387002 @default.
- W4313249905 cites W2103681608 @default.
- W4313249905 cites W2565713774 @default.
- W4313249905 cites W2960015172 @default.
- W4313249905 cites W3008827533 @default.
- W4313249905 cites W3014007058 @default.
- W4313249905 cites W3015696390 @default.
- W4313249905 cites W3033286755 @default.
- W4313249905 cites W3042422162 @default.
- W4313249905 cites W3049518011 @default.
- W4313249905 cites W3134224893 @default.
- W4313249905 cites W3157024165 @default.
- W4313249905 cites W3170760406 @default.
- W4313249905 cites W3172352277 @default.
- W4313249905 cites W4200248474 @default.
- W4313249905 cites W4205409780 @default.
- W4313249905 cites W4210738618 @default.
- W4313249905 cites W4212912200 @default.
- W4313249905 cites W4214860561 @default.
- W4313249905 cites W4220683372 @default.
- W4313249905 cites W4220799506 @default.
- W4313249905 cites W4223431389 @default.
- W4313249905 cites W4225563107 @default.
- W4313249905 cites W4226146559 @default.
- W4313249905 cites W4226283930 @default.
- W4313249905 cites W4280647947 @default.
- W4313249905 cites W4283798779 @default.
- W4313249905 cites W4286217721 @default.
- W4313249905 cites W4290085942 @default.
- W4313249905 cites W4290805533 @default.
- W4313249905 cites W4292479248 @default.
- W4313249905 cites W4292544800 @default.
- W4313249905 cites W4292654734 @default.
- W4313249905 cites W4292693422 @default.
- W4313249905 cites W4292879187 @default.
- W4313249905 cites W4293537886 @default.
- W4313249905 cites W4293567752 @default.
- W4313249905 cites W4293777786 @default.
- W4313249905 cites W4293843074 @default.
- W4313249905 cites W4294916264 @default.
- W4313249905 cites W4295014096 @default.
- W4313249905 doi "https://doi.org/10.1186/s12964-022-01010-2" @default.
- W4313249905 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36575422" @default.
- W4313249905 hasPublicationYear "2022" @default.
- W4313249905 type Work @default.
- W4313249905 citedByCount "1" @default.
- W4313249905 countsByYear W43132499052023 @default.
- W4313249905 crossrefType "journal-article" @default.
- W4313249905 hasAuthorship W4313249905A5002417571 @default.
- W4313249905 hasAuthorship W4313249905A5014394467 @default.
- W4313249905 hasAuthorship W4313249905A5018742393 @default.
- W4313249905 hasAuthorship W4313249905A5023419105 @default.
- W4313249905 hasAuthorship W4313249905A5044367029 @default.
- W4313249905 hasAuthorship W4313249905A5053702872 @default.
- W4313249905 hasAuthorship W4313249905A5079594267 @default.
- W4313249905 hasAuthorship W4313249905A5080931779 @default.
- W4313249905 hasBestOaLocation W43132499051 @default.
- W4313249905 hasConcept C104317684 @default.
- W4313249905 hasConcept C150194340 @default.
- W4313249905 hasConcept C152724338 @default.
- W4313249905 hasConcept C162317418 @default.
- W4313249905 hasConcept C203014093 @default.
- W4313249905 hasConcept C2776042228 @default.
- W4313249905 hasConcept C54355233 @default.
- W4313249905 hasConcept C55105296 @default.
- W4313249905 hasConcept C60644358 @default.
- W4313249905 hasConcept C67339327 @default.
- W4313249905 hasConcept C70721500 @default.
- W4313249905 hasConcept C86339819 @default.
- W4313249905 hasConcept C86803240 @default.
- W4313249905 hasConceptScore W4313249905C104317684 @default.
- W4313249905 hasConceptScore W4313249905C150194340 @default.
- W4313249905 hasConceptScore W4313249905C152724338 @default.
- W4313249905 hasConceptScore W4313249905C162317418 @default.
- W4313249905 hasConceptScore W4313249905C203014093 @default.
- W4313249905 hasConceptScore W4313249905C2776042228 @default.
- W4313249905 hasConceptScore W4313249905C54355233 @default.
- W4313249905 hasConceptScore W4313249905C55105296 @default.
- W4313249905 hasConceptScore W4313249905C60644358 @default.
- W4313249905 hasConceptScore W4313249905C67339327 @default.
- W4313249905 hasConceptScore W4313249905C70721500 @default.
- W4313249905 hasConceptScore W4313249905C86339819 @default.
- W4313249905 hasConceptScore W4313249905C86803240 @default.
- W4313249905 hasFunder F4320321001 @default.
- W4313249905 hasIssue "1" @default.
- W4313249905 hasLocation W43132499051 @default.
- W4313249905 hasLocation W43132499052 @default.