Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313251036> ?p ?o ?g. }
Showing items 1 to 95 of
95
with 100 items per page.
- W4313251036 abstract "ABSTRACT Cardiovascular disease (CVD) remains the leading cause of mortality worldwide. Preclinical studies to research and validate therapeutic interventions for CVD often depend on two-dimensional histological surveys. The use of light sheet fluorescent microscopy together with optical clearing methods amenable to immunofluorescent staining are recent advances, all of which deliver detailed three-dimensional rendering of vessels. This offers the ability to describe and quantify features critical in CVD models, specifically, atherosclerotic plaque burden in atherosclerotic animal models. The main challenge for this approach remains the lengthy, hands-on, analysis time. Labkit is a user-friendly Fiji plugin that applies a machine-learning algorithm to create three-dimensional renderings from large microscopy data. The application of this plugin is expected to decrease the hands-on analysis time required to generate accurate volumetric renderings of atherosclerotic plaque burden in athero-prone mice. For analysis, Ldlr -/- (C57/Bl6) mice aged 6-8 weeks were fed a high-fat diet for 15 weeks to allow the development of atherosclerotic plaque along the aorta. Aged-matched chow-fed C57/Bl6 mice were used as athero-free controls. Aortic roots were sectioned and stained with hematoxylin and eosin, or oil red o stains, and later imaged and analyzed using ImageJ. AdipoClear and immunolabeling together with light-sheet fluorescent microscopy allowed for three-dimensional visualization. Both Imaris software v9.9.1 and the built-in bridge to ImageJ/Labkit were used to quantify the plaque burden in the mice manually or automatically, respectively. Our findings indicate that Labkit offers an effective and user-friendly platform for the segmentation of atherosclerotic plaque in aortas." @default.
- W4313251036 created "2023-01-06" @default.
- W4313251036 creator A5010263152 @default.
- W4313251036 creator A5017790825 @default.
- W4313251036 creator A5030910031 @default.
- W4313251036 creator A5046123956 @default.
- W4313251036 creator A5086774313 @default.
- W4313251036 date "2022-12-23" @default.
- W4313251036 modified "2023-09-23" @default.
- W4313251036 title "Application of Machine Learning for Volumetric Analysis of Atherosclerotic Burden" @default.
- W4313251036 cites W175907849 @default.
- W4313251036 cites W1886864374 @default.
- W4313251036 cites W1978363617 @default.
- W4313251036 cites W1994140409 @default.
- W4313251036 cites W2026552834 @default.
- W4313251036 cites W2032422333 @default.
- W4313251036 cites W2056245899 @default.
- W4313251036 cites W2116633173 @default.
- W4313251036 cites W2117398327 @default.
- W4313251036 cites W2135269757 @default.
- W4313251036 cites W2587775213 @default.
- W4313251036 cites W2601810315 @default.
- W4313251036 cites W2609004004 @default.
- W4313251036 cites W2737249697 @default.
- W4313251036 cites W2811106513 @default.
- W4313251036 cites W2883539816 @default.
- W4313251036 cites W2888160122 @default.
- W4313251036 cites W2951118172 @default.
- W4313251036 cites W2952481429 @default.
- W4313251036 cites W2970803157 @default.
- W4313251036 cites W2975634117 @default.
- W4313251036 cites W2998777569 @default.
- W4313251036 cites W3006137528 @default.
- W4313251036 cites W3111394642 @default.
- W4313251036 cites W3129785942 @default.
- W4313251036 cites W3156859314 @default.
- W4313251036 cites W3184444416 @default.
- W4313251036 cites W4210242902 @default.
- W4313251036 cites W4213201557 @default.
- W4313251036 cites W4220652264 @default.
- W4313251036 cites W4220883318 @default.
- W4313251036 cites W4224951263 @default.
- W4313251036 cites W4283798097 @default.
- W4313251036 cites W4293783106 @default.
- W4313251036 cites W4304185479 @default.
- W4313251036 cites W4307189091 @default.
- W4313251036 doi "https://doi.org/10.1101/2022.12.23.521811" @default.
- W4313251036 hasPublicationYear "2022" @default.
- W4313251036 type Work @default.
- W4313251036 citedByCount "0" @default.
- W4313251036 crossrefType "posted-content" @default.
- W4313251036 hasAuthorship W4313251036A5010263152 @default.
- W4313251036 hasAuthorship W4313251036A5017790825 @default.
- W4313251036 hasAuthorship W4313251036A5030910031 @default.
- W4313251036 hasAuthorship W4313251036A5046123956 @default.
- W4313251036 hasAuthorship W4313251036A5086774313 @default.
- W4313251036 hasBestOaLocation W43132510361 @default.
- W4313251036 hasConcept C125473707 @default.
- W4313251036 hasConcept C136229726 @default.
- W4313251036 hasConcept C142724271 @default.
- W4313251036 hasConcept C147080431 @default.
- W4313251036 hasConcept C154945302 @default.
- W4313251036 hasConcept C204232928 @default.
- W4313251036 hasConcept C205711294 @default.
- W4313251036 hasConcept C2777877921 @default.
- W4313251036 hasConcept C41008148 @default.
- W4313251036 hasConcept C71924100 @default.
- W4313251036 hasConcept C74864618 @default.
- W4313251036 hasConceptScore W4313251036C125473707 @default.
- W4313251036 hasConceptScore W4313251036C136229726 @default.
- W4313251036 hasConceptScore W4313251036C142724271 @default.
- W4313251036 hasConceptScore W4313251036C147080431 @default.
- W4313251036 hasConceptScore W4313251036C154945302 @default.
- W4313251036 hasConceptScore W4313251036C204232928 @default.
- W4313251036 hasConceptScore W4313251036C205711294 @default.
- W4313251036 hasConceptScore W4313251036C2777877921 @default.
- W4313251036 hasConceptScore W4313251036C41008148 @default.
- W4313251036 hasConceptScore W4313251036C71924100 @default.
- W4313251036 hasConceptScore W4313251036C74864618 @default.
- W4313251036 hasLocation W43132510361 @default.
- W4313251036 hasOpenAccess W4313251036 @default.
- W4313251036 hasPrimaryLocation W43132510361 @default.
- W4313251036 hasRelatedWork W1535769111 @default.
- W4313251036 hasRelatedWork W1993946980 @default.
- W4313251036 hasRelatedWork W2084656721 @default.
- W4313251036 hasRelatedWork W2378678841 @default.
- W4313251036 hasRelatedWork W2554246509 @default.
- W4313251036 hasRelatedWork W2803401815 @default.
- W4313251036 hasRelatedWork W2883090716 @default.
- W4313251036 hasRelatedWork W3030175595 @default.
- W4313251036 hasRelatedWork W3133768261 @default.
- W4313251036 hasRelatedWork W3214832126 @default.
- W4313251036 isParatext "false" @default.
- W4313251036 isRetracted "false" @default.
- W4313251036 workType "article" @default.