Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313251766> ?p ?o ?g. }
- W4313251766 endingPage "109066" @default.
- W4313251766 startingPage "109066" @default.
- W4313251766 abstract "Accurate state of health estimation of lithium-ion batteries is imperative for reliable and safe operations of electric vehicles. This study presents a hybrid attention and deep learning method for state of health prediction of lithium-ion batteries. First, the temperature difference curves are calculated from the charging data and subsequently smoothed by the Kalman filter. Next, the health features related to capacity degradation are extracted from the differential temperature curves to characterize the relationship between temperature and aging. Then, a hybrid attention and deep learning model integrating the strengths of convolutional neural network, gated recurrent unit recurrent neural network and attention mechanism is developed to forecast the battery's state of health. The superior prediction performance of the proposed method is verified by comparing with eleven mainstream methods. All the estimation errors can be maintained within 1.3% without extracting highly correlated health features, illustrating the promising accuracy and reliability of the developed state of health estimation method. In addition, the results validate that the proposed algorithm can achieve satisfied robustness to battery inconsistency." @default.
- W4313251766 created "2023-01-06" @default.
- W4313251766 creator A5025904667 @default.
- W4313251766 creator A5042643951 @default.
- W4313251766 creator A5044670285 @default.
- W4313251766 creator A5074222866 @default.
- W4313251766 creator A5081983418 @default.
- W4313251766 creator A5082373596 @default.
- W4313251766 date "2023-04-01" @default.
- W4313251766 modified "2023-10-16" @default.
- W4313251766 title "State of health estimation for lithium-ion batteries based on hybrid attention and deep learning" @default.
- W4313251766 cites W1015042224 @default.
- W4313251766 cites W1923273760 @default.
- W4313251766 cites W2509364735 @default.
- W4313251766 cites W2563343938 @default.
- W4313251766 cites W2792573670 @default.
- W4313251766 cites W2803065194 @default.
- W4313251766 cites W2883925255 @default.
- W4313251766 cites W2895147187 @default.
- W4313251766 cites W2896294159 @default.
- W4313251766 cites W2915034955 @default.
- W4313251766 cites W2962135525 @default.
- W4313251766 cites W2962949934 @default.
- W4313251766 cites W2963691557 @default.
- W4313251766 cites W2967729973 @default.
- W4313251766 cites W2968677983 @default.
- W4313251766 cites W2999951339 @default.
- W4313251766 cites W3010268307 @default.
- W4313251766 cites W3013372615 @default.
- W4313251766 cites W3015123664 @default.
- W4313251766 cites W3017225039 @default.
- W4313251766 cites W3029611275 @default.
- W4313251766 cites W3039037816 @default.
- W4313251766 cites W3089287947 @default.
- W4313251766 cites W3092068253 @default.
- W4313251766 cites W3092850543 @default.
- W4313251766 cites W3100042739 @default.
- W4313251766 cites W3105559994 @default.
- W4313251766 cites W3114628019 @default.
- W4313251766 cites W3131442660 @default.
- W4313251766 cites W3132760764 @default.
- W4313251766 cites W3133290113 @default.
- W4313251766 cites W3137080820 @default.
- W4313251766 cites W3153898906 @default.
- W4313251766 cites W3174812422 @default.
- W4313251766 cites W3175001065 @default.
- W4313251766 cites W3195279647 @default.
- W4313251766 cites W3207838049 @default.
- W4313251766 cites W3216627126 @default.
- W4313251766 cites W4200390501 @default.
- W4313251766 cites W4205303226 @default.
- W4313251766 cites W4210360507 @default.
- W4313251766 cites W4210776654 @default.
- W4313251766 cites W4220662822 @default.
- W4313251766 cites W4220945346 @default.
- W4313251766 cites W4221017089 @default.
- W4313251766 cites W4221108419 @default.
- W4313251766 cites W4223901999 @default.
- W4313251766 cites W4281674107 @default.
- W4313251766 cites W4281874603 @default.
- W4313251766 cites W4283067523 @default.
- W4313251766 cites W4283767610 @default.
- W4313251766 cites W4284971318 @default.
- W4313251766 cites W4285384056 @default.
- W4313251766 cites W4295886013 @default.
- W4313251766 cites W4297839573 @default.
- W4313251766 doi "https://doi.org/10.1016/j.ress.2022.109066" @default.
- W4313251766 hasPublicationYear "2023" @default.
- W4313251766 type Work @default.
- W4313251766 citedByCount "9" @default.
- W4313251766 countsByYear W43132517662023 @default.
- W4313251766 crossrefType "journal-article" @default.
- W4313251766 hasAuthorship W4313251766A5025904667 @default.
- W4313251766 hasAuthorship W4313251766A5042643951 @default.
- W4313251766 hasAuthorship W4313251766A5044670285 @default.
- W4313251766 hasAuthorship W4313251766A5074222866 @default.
- W4313251766 hasAuthorship W4313251766A5081983418 @default.
- W4313251766 hasAuthorship W4313251766A5082373596 @default.
- W4313251766 hasConcept C104317684 @default.
- W4313251766 hasConcept C108583219 @default.
- W4313251766 hasConcept C119857082 @default.
- W4313251766 hasConcept C121332964 @default.
- W4313251766 hasConcept C154945302 @default.
- W4313251766 hasConcept C157286648 @default.
- W4313251766 hasConcept C163258240 @default.
- W4313251766 hasConcept C185592680 @default.
- W4313251766 hasConcept C2777294910 @default.
- W4313251766 hasConcept C41008148 @default.
- W4313251766 hasConcept C43214815 @default.
- W4313251766 hasConcept C50644808 @default.
- W4313251766 hasConcept C55493867 @default.
- W4313251766 hasConcept C555008776 @default.
- W4313251766 hasConcept C62520636 @default.
- W4313251766 hasConcept C63479239 @default.
- W4313251766 hasConcept C81363708 @default.
- W4313251766 hasConceptScore W4313251766C104317684 @default.
- W4313251766 hasConceptScore W4313251766C108583219 @default.
- W4313251766 hasConceptScore W4313251766C119857082 @default.