Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313251768> ?p ?o ?g. }
Showing items 1 to 74 of
74
with 100 items per page.
- W4313251768 endingPage "10" @default.
- W4313251768 startingPage "1" @default.
- W4313251768 abstract "In manufacturing systems, many quality measurements are in the form of images, including overlay measurements in the semiconductor manufacturing and dimensional deformation profiles of fuselages in an aircraft assembly process. To reduce the process variability and ensure on-target quality, process control strategies should be deployed, in which the high-dimensional image output is controlled by one or more input variables. To design an effective control strategy, the process model should be first estimated via relationship exploration between the image output and inputs, off-line. Next, the control law is formulated by minimizing the control objective function online. The main challenges of achieving such a control strategy include (i) the high dimensional output of a regression model, (ii) the integrated analysis of both the spatial structure of image outputs and the temporal structure of the image sequence, and (iii) non-iid noises. To address these challenges, we propose a novel tensor-based process control approach by incorporating the tensor time series and regression techniques. Based on the process model, we can then obtain the control law by minimizing a control objective function. Although our proposed approach is motivated by a 2D image case, it can be extended to higher-order tensors such as point clouds. Simulation and case studies show that our proposed method is more effective than benchmarks in terms of relative mean square error." @default.
- W4313251768 created "2023-01-06" @default.
- W4313251768 creator A5021269788 @default.
- W4313251768 creator A5022416209 @default.
- W4313251768 creator A5072570845 @default.
- W4313251768 date "2023-01-12" @default.
- W4313251768 modified "2023-10-17" @default.
- W4313251768 title "Image-Based Feedback Control Using Tensor Analysis" @default.
- W4313251768 cites W1580176742 @default.
- W4313251768 cites W1965469633 @default.
- W4313251768 cites W1986326495 @default.
- W4313251768 cites W2005692872 @default.
- W4313251768 cites W2024165284 @default.
- W4313251768 cites W2038057026 @default.
- W4313251768 cites W2069947945 @default.
- W4313251768 cites W2136002544 @default.
- W4313251768 cites W2258054274 @default.
- W4313251768 cites W2569250433 @default.
- W4313251768 cites W2941045572 @default.
- W4313251768 cites W2964154549 @default.
- W4313251768 cites W3106376083 @default.
- W4313251768 cites W4235648775 @default.
- W4313251768 doi "https://doi.org/10.1080/00401706.2022.2157880" @default.
- W4313251768 hasPublicationYear "2023" @default.
- W4313251768 type Work @default.
- W4313251768 citedByCount "2" @default.
- W4313251768 countsByYear W43132517682022 @default.
- W4313251768 countsByYear W43132517682023 @default.
- W4313251768 crossrefType "journal-article" @default.
- W4313251768 hasAuthorship W4313251768A5021269788 @default.
- W4313251768 hasAuthorship W4313251768A5022416209 @default.
- W4313251768 hasAuthorship W4313251768A5072570845 @default.
- W4313251768 hasConcept C111919701 @default.
- W4313251768 hasConcept C11413529 @default.
- W4313251768 hasConcept C115961682 @default.
- W4313251768 hasConcept C126255220 @default.
- W4313251768 hasConcept C154945302 @default.
- W4313251768 hasConcept C155386361 @default.
- W4313251768 hasConcept C2775924081 @default.
- W4313251768 hasConcept C33923547 @default.
- W4313251768 hasConcept C41008148 @default.
- W4313251768 hasConcept C47446073 @default.
- W4313251768 hasConcept C98045186 @default.
- W4313251768 hasConceptScore W4313251768C111919701 @default.
- W4313251768 hasConceptScore W4313251768C11413529 @default.
- W4313251768 hasConceptScore W4313251768C115961682 @default.
- W4313251768 hasConceptScore W4313251768C126255220 @default.
- W4313251768 hasConceptScore W4313251768C154945302 @default.
- W4313251768 hasConceptScore W4313251768C155386361 @default.
- W4313251768 hasConceptScore W4313251768C2775924081 @default.
- W4313251768 hasConceptScore W4313251768C33923547 @default.
- W4313251768 hasConceptScore W4313251768C41008148 @default.
- W4313251768 hasConceptScore W4313251768C47446073 @default.
- W4313251768 hasConceptScore W4313251768C98045186 @default.
- W4313251768 hasFunder F4320320373 @default.
- W4313251768 hasFunder F4320337391 @default.
- W4313251768 hasLocation W43132517681 @default.
- W4313251768 hasOpenAccess W4313251768 @default.
- W4313251768 hasPrimaryLocation W43132517681 @default.
- W4313251768 hasRelatedWork W2009772222 @default.
- W4313251768 hasRelatedWork W2351491280 @default.
- W4313251768 hasRelatedWork W2370652759 @default.
- W4313251768 hasRelatedWork W2371447506 @default.
- W4313251768 hasRelatedWork W2379162918 @default.
- W4313251768 hasRelatedWork W2386767533 @default.
- W4313251768 hasRelatedWork W303980170 @default.
- W4313251768 hasRelatedWork W3141679561 @default.
- W4313251768 hasRelatedWork W4255438948 @default.
- W4313251768 hasRelatedWork W831794578 @default.
- W4313251768 isParatext "false" @default.
- W4313251768 isRetracted "false" @default.
- W4313251768 workType "article" @default.