Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313251908> ?p ?o ?g. }
- W4313251908 endingPage "125" @default.
- W4313251908 startingPage "114" @default.
- W4313251908 abstract "The general psychopathology factor (p-factor) represents shared variance across mental disorders based on psychopathologic symptoms. The Adolescent Brain Cognitive Development (ABCD) Study offers an unprecedented opportunity to investigate functional networks (FNs) from functional magnetic resonance imaging (fMRI) associated with the psychopathology of an adolescent cohort (n > 10,000). However, the heterogeneities associated with the use of multiple sites and multiple scanners in the ABCD Study need to be overcome to improve the prediction of the p-factor using fMRI. We proposed a scanner-generalization neural network (SGNN) to predict the individual p-factor by systematically reducing the scanner effect for resting-state functional connectivity (RSFC). We included 6905 adolescents from 18 sites whose fMRI data were collected using either Siemens or GE scanners. The p-factor was estimated based on the Child Behavior Checklist (CBCL) scores available in the ABCD study using exploratory factor analysis. We evaluated the Pearson's correlation coefficients (CCs) for p-factor prediction via leave-one/two-site-out cross-validation (LOSOCV/LTSOCV) and identified important FNs from the weight features (WFs) of the SGNN. The CCs were higher for the SGNN than for alternative models when using both LOSOCV (0.1631 ± 0.0673 for the SGNN vs. 0.1497 ± 0.0710 for kernel ridge regression [KRR]; p < 0.05 from a two-tailed paired t-test) and LTSOCV (0.1469 ± 0.0381 for the SGNN vs. 0.1394 ± 0.0359 for KRR; p = 0.01). It was found that (a) the default-mode and dorsal attention FNs were important for p-factor prediction, and (b) the intra-visual FN was important for scanner generalization. We demonstrated the efficacy of our novel SGNN model for p-factor prediction while simultaneously eliminating scanner-related confounding effects for RSFC." @default.
- W4313251908 created "2023-01-06" @default.
- W4313251908 creator A5017817176 @default.
- W4313251908 creator A5054678835 @default.
- W4313251908 creator A5072344377 @default.
- W4313251908 date "2023-02-01" @default.
- W4313251908 modified "2023-09-23" @default.
- W4313251908 title "General psychopathology factor (p-factor) prediction using resting-state functional connectivity and a scanner-generalization neural network" @default.
- W4313251908 cites W1457602677 @default.
- W4313251908 cites W1760829075 @default.
- W4313251908 cites W1976623182 @default.
- W4313251908 cites W1983208069 @default.
- W4313251908 cites W2018473894 @default.
- W4313251908 cites W2020732236 @default.
- W4313251908 cites W2024317089 @default.
- W4313251908 cites W2030561475 @default.
- W4313251908 cites W2048631316 @default.
- W4313251908 cites W2058046532 @default.
- W4313251908 cites W2062088270 @default.
- W4313251908 cites W2083956595 @default.
- W4313251908 cites W2085561705 @default.
- W4313251908 cites W2104016179 @default.
- W4313251908 cites W2107499714 @default.
- W4313251908 cites W2120654343 @default.
- W4313251908 cites W2158327608 @default.
- W4313251908 cites W2167459234 @default.
- W4313251908 cites W2167868121 @default.
- W4313251908 cites W2278265690 @default.
- W4313251908 cites W2327037637 @default.
- W4313251908 cites W2416451487 @default.
- W4313251908 cites W2568162413 @default.
- W4313251908 cites W2587220935 @default.
- W4313251908 cites W2594185139 @default.
- W4313251908 cites W2599264051 @default.
- W4313251908 cites W2606905669 @default.
- W4313251908 cites W2727261861 @default.
- W4313251908 cites W2755945667 @default.
- W4313251908 cites W2766963537 @default.
- W4313251908 cites W2789530810 @default.
- W4313251908 cites W2795342453 @default.
- W4313251908 cites W2795870103 @default.
- W4313251908 cites W2800513903 @default.
- W4313251908 cites W2803011420 @default.
- W4313251908 cites W2811386582 @default.
- W4313251908 cites W2888149555 @default.
- W4313251908 cites W2896999822 @default.
- W4313251908 cites W2897916690 @default.
- W4313251908 cites W2901564651 @default.
- W4313251908 cites W2911276263 @default.
- W4313251908 cites W2913527682 @default.
- W4313251908 cites W2949658336 @default.
- W4313251908 cites W2950030754 @default.
- W4313251908 cites W2955501090 @default.
- W4313251908 cites W2968585354 @default.
- W4313251908 cites W2973570606 @default.
- W4313251908 cites W2980501619 @default.
- W4313251908 cites W3007357247 @default.
- W4313251908 cites W3012009865 @default.
- W4313251908 cites W3016957018 @default.
- W4313251908 cites W3038214064 @default.
- W4313251908 cites W3038220767 @default.
- W4313251908 cites W3080221164 @default.
- W4313251908 cites W3083695772 @default.
- W4313251908 cites W3094279761 @default.
- W4313251908 cites W3109762849 @default.
- W4313251908 cites W3110378780 @default.
- W4313251908 cites W3115055674 @default.
- W4313251908 cites W3121045849 @default.
- W4313251908 cites W3127024923 @default.
- W4313251908 cites W3153445520 @default.
- W4313251908 cites W3155244002 @default.
- W4313251908 cites W3162245332 @default.
- W4313251908 cites W3194982073 @default.
- W4313251908 cites W3211950855 @default.
- W4313251908 cites W3216528674 @default.
- W4313251908 cites W4200580706 @default.
- W4313251908 doi "https://doi.org/10.1016/j.jpsychires.2022.12.037" @default.
- W4313251908 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36580867" @default.
- W4313251908 hasPublicationYear "2023" @default.
- W4313251908 type Work @default.
- W4313251908 citedByCount "2" @default.
- W4313251908 countsByYear W43132519082023 @default.
- W4313251908 crossrefType "journal-article" @default.
- W4313251908 hasAuthorship W4313251908A5017817176 @default.
- W4313251908 hasAuthorship W4313251908A5054678835 @default.
- W4313251908 hasAuthorship W4313251908A5072344377 @default.
- W4313251908 hasConcept C123273963 @default.
- W4313251908 hasConcept C15744967 @default.
- W4313251908 hasConcept C169760540 @default.
- W4313251908 hasConcept C2779226451 @default.
- W4313251908 hasConcept C3018011982 @default.
- W4313251908 hasConcept C66324658 @default.
- W4313251908 hasConcept C70410870 @default.
- W4313251908 hasConcept C97820695 @default.
- W4313251908 hasConceptScore W4313251908C123273963 @default.
- W4313251908 hasConceptScore W4313251908C15744967 @default.
- W4313251908 hasConceptScore W4313251908C169760540 @default.
- W4313251908 hasConceptScore W4313251908C2779226451 @default.