Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313252106> ?p ?o ?g. }
- W4313252106 endingPage "105638" @default.
- W4313252106 startingPage "105638" @default.
- W4313252106 abstract "Knowledge of the nonlinear viscoelastic properties of the liver is important, but the complex tissue behavior outside the linear viscoelastic regime has impeded their characterization, particularly in vivo. Combining static compression with magnetic resonance (MR) elastography has the potential to be a useful imaging method for assessing large deformation mechanical properties of soft tissues in vivo. However, this remains to be verified. Therefore this study aims first to determine whether MR elastography can measure the nonlinear mechanical properties of ex vivo bovine liver tissue under varying levels of uniform and focal preloads (up to 30%), and second to compare MR elastography-derived complex shear modulus with standard rheological measurements.Nine fresh bovine livers were collected from a local abattoir, and experiments were conducted within 12hr of death. Two cubic samples (∼10 × 10 × 10 cm3) were dissected from each liver and imaged using MR elastography (60 Hz) under 4 levels of uniform and focal preload (1, 10, 20, and 30% of sample width) to investigate the relationship between MR elastography-derived complex shear modulus (G∗) and the maximum principal Right Cauchy Green Strain (C11). Three tissue samples from each of the same 9 livers underwent oscillatory rheometry under the same 4 preloads (1, 10, 20, and 30% strain). MR elastography-derived complex shear modulus (G∗) from the uniform preload was validated against rheometry by fitting the frequency dependence of G∗ with a power-law and extrapolating rheometry-derived G∗ to 60 Hz.MR elastography-derived G∗ increased with increasing compressive large deformation strain, and followed a power-law curve (G∗ = 1.73 × C11-0.38, R2 = 0.96). Similarly, rheometry-derived G∗ at 1 Hz, increasing from 0.66 ± 1.03 kPa (1% strain) to 1.84 ± 1.65 kPa (30% strain, RM one-way ANOVA, P < 0.001), and the frequency dependence of G∗ followed a power-law with the exponent decreasing from 0.13 to 0.06 with increasing preload. MR elastography-derived G∗ was 1.4-3.1 times higher than the extrapolated rheometry-derived G∗ at 60 Hz, but the strain dependence was consistent between rheometry and MR elastography measurements.This study demonstrates that MR elastography can detect changes in ex vivo bovine liver complex shear modulus due to either uniform or focal preload and therefore can be a useful technique to characterize nonlinear viscoelastic properties of soft tissue, provided that strains applied to the tissue can be quantified. Although MR elastography could reliably characterize the strain dependence of the ex vivo bovine liver, MR elastography overestimated the complex shear modulus of the tissue compared to rheological measurements, particularly at lower preload (<10%). That is likely to be important in clinical hepatic MR elastography diagnosis studies if preload is not carefully considered. A limitation is the absence of overlapping frequency between rheometry and MR elastography for formal validation." @default.
- W4313252106 created "2023-01-06" @default.
- W4313252106 creator A5020639014 @default.
- W4313252106 creator A5045967354 @default.
- W4313252106 creator A5050106512 @default.
- W4313252106 creator A5070086635 @default.
- W4313252106 creator A5075699083 @default.
- W4313252106 date "2023-02-01" @default.
- W4313252106 modified "2023-10-09" @default.
- W4313252106 title "Ex vivo bovine liver nonlinear viscoelastic properties: MR elastography and rheological measurements" @default.
- W4313252106 cites W1556681331 @default.
- W4313252106 cites W1782113176 @default.
- W4313252106 cites W1897972544 @default.
- W4313252106 cites W1944060924 @default.
- W4313252106 cites W1955568318 @default.
- W4313252106 cites W1965542445 @default.
- W4313252106 cites W1972980222 @default.
- W4313252106 cites W1973653418 @default.
- W4313252106 cites W1983927733 @default.
- W4313252106 cites W1989676745 @default.
- W4313252106 cites W2002937593 @default.
- W4313252106 cites W2007208391 @default.
- W4313252106 cites W2007444031 @default.
- W4313252106 cites W2007948315 @default.
- W4313252106 cites W2016706835 @default.
- W4313252106 cites W2026786928 @default.
- W4313252106 cites W2031795410 @default.
- W4313252106 cites W2043043177 @default.
- W4313252106 cites W2046031887 @default.
- W4313252106 cites W2056128217 @default.
- W4313252106 cites W2072827343 @default.
- W4313252106 cites W2078186292 @default.
- W4313252106 cites W2083039650 @default.
- W4313252106 cites W2083683750 @default.
- W4313252106 cites W2089353645 @default.
- W4313252106 cites W2103857226 @default.
- W4313252106 cites W2107649622 @default.
- W4313252106 cites W2112688592 @default.
- W4313252106 cites W2117827638 @default.
- W4313252106 cites W2126598675 @default.
- W4313252106 cites W2143755293 @default.
- W4313252106 cites W2152072871 @default.
- W4313252106 cites W2158167845 @default.
- W4313252106 cites W2158738279 @default.
- W4313252106 cites W2224540085 @default.
- W4313252106 cites W2405215733 @default.
- W4313252106 cites W2415742613 @default.
- W4313252106 cites W2527732295 @default.
- W4313252106 cites W2572510694 @default.
- W4313252106 cites W2602094073 @default.
- W4313252106 cites W2602206382 @default.
- W4313252106 cites W274547093 @default.
- W4313252106 cites W2763938363 @default.
- W4313252106 cites W2887566440 @default.
- W4313252106 cites W2889531877 @default.
- W4313252106 cites W2926479262 @default.
- W4313252106 cites W2952789011 @default.
- W4313252106 cites W2979779160 @default.
- W4313252106 cites W2990497115 @default.
- W4313252106 cites W2998421371 @default.
- W4313252106 cites W3005982792 @default.
- W4313252106 cites W3044447404 @default.
- W4313252106 cites W3177178792 @default.
- W4313252106 cites W3199880302 @default.
- W4313252106 cites W2800164754 @default.
- W4313252106 doi "https://doi.org/10.1016/j.jmbbm.2022.105638" @default.
- W4313252106 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36623403" @default.
- W4313252106 hasPublicationYear "2023" @default.
- W4313252106 type Work @default.
- W4313252106 citedByCount "1" @default.
- W4313252106 crossrefType "journal-article" @default.
- W4313252106 hasAuthorship W4313252106A5020639014 @default.
- W4313252106 hasAuthorship W4313252106A5045967354 @default.
- W4313252106 hasAuthorship W4313252106A5050106512 @default.
- W4313252106 hasAuthorship W4313252106A5070086635 @default.
- W4313252106 hasAuthorship W4313252106A5075699083 @default.
- W4313252106 hasConcept C126838900 @default.
- W4313252106 hasConcept C136229726 @default.
- W4313252106 hasConcept C143753070 @default.
- W4313252106 hasConcept C159985019 @default.
- W4313252106 hasConcept C186541917 @default.
- W4313252106 hasConcept C191172559 @default.
- W4313252106 hasConcept C192562407 @default.
- W4313252106 hasConcept C200990466 @default.
- W4313252106 hasConcept C2775934546 @default.
- W4313252106 hasConcept C2777690781 @default.
- W4313252106 hasConcept C2777766500 @default.
- W4313252106 hasConcept C2779124084 @default.
- W4313252106 hasConcept C2780826214 @default.
- W4313252106 hasConcept C41279357 @default.
- W4313252106 hasConcept C71924100 @default.
- W4313252106 hasConceptScore W4313252106C126838900 @default.
- W4313252106 hasConceptScore W4313252106C136229726 @default.
- W4313252106 hasConceptScore W4313252106C143753070 @default.
- W4313252106 hasConceptScore W4313252106C159985019 @default.
- W4313252106 hasConceptScore W4313252106C186541917 @default.
- W4313252106 hasConceptScore W4313252106C191172559 @default.
- W4313252106 hasConceptScore W4313252106C192562407 @default.