Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313252602> ?p ?o ?g. }
- W4313252602 endingPage "100089" @default.
- W4313252602 startingPage "100089" @default.
- W4313252602 abstract "Multivariate Curve Resolution (MCR) is a multivariate analysis procedure commonly used to analyze spectroscopic data providing the number of components co-existing in a chemical, the pure spectra of the components as well as their concentration profiles. Usually, this procedure relies on the existence of distinct systematic variability among spectra of the different samples, which is provided by different sources of variation associated to differences in samples origin, composition, physical chemical treatment etc. In solid-state NMR, MCR has been also used as a post-processing method for spectral denoising or editing based on a given NMR property. In this type of use, the variability is induced by the incrementation of a given parameter in the pulse-sequence, which encodes the separation property in the acquired spectra. In this article we further explore the idea of using a specific pulse sequence to induce a controlled variability in the 13C solid-state NMR spectra and then apply MCR to separate the spectral components according to the properties associated to the induced variability. We build upon a previous study of sugarcane bagasse where a series of 13C solid-state NMR spectra acquired with the Torchia-T1 CPMAS pulse sequence, with varying relaxation periods, was combined with different sample treatments, to estimate individual 13C solid-state NMR spectra of different molecular components (cellulose, xylan and lignin). Using the same pulse sequence, we show other application examples to demonstrate the potentiality, parameter optimization and/or establish the limitations of the procedure. As a first proof of principle, we apply the approach to commercial semicrystalline medium density polyethylene (MDPE) and Polyether ether ketone (PEEK) providing the estimation of the individual 13C ssNMR spectra of the polymer chains in the amorphous (short T1) and crystalline (long T1) domains. The analysis also provided the relative intensities of each estimated pure spectra, which are related to the characteristic T1 decays of the amorphous and crystalline domain fractions. We also apply the analysis to isotactic poly (1-butene) (iPB-I) as an example in which the induced T1 variability occurs due to the mobility difference between the polymer backbone and side-chains. A jack-knifing procedure and a student t text allow us to stablish the minimum number of spectra and the range of relaxation periods that need to be used to achieve a precise estimation of the individual pure spectra and their relative intensities. A detail discussion about possible drawbacks, applications to more complex systems, and potential extensions to other type of induced variability are also presented." @default.
- W4313252602 created "2023-01-06" @default.
- W4313252602 creator A5019419722 @default.
- W4313252602 creator A5049190497 @default.
- W4313252602 creator A5086812846 @default.
- W4313252602 date "2023-06-01" @default.
- W4313252602 modified "2023-09-30" @default.
- W4313252602 title "Pulse sequence induced variability combined with multivariate analysis as a potential tool for 13C solid-state NMR signals separation, quantification, and classification" @default.
- W4313252602 cites W1995843625 @default.
- W4313252602 cites W1997763592 @default.
- W4313252602 cites W2008465588 @default.
- W4313252602 cites W2021151619 @default.
- W4313252602 cites W2034669256 @default.
- W4313252602 cites W2037330639 @default.
- W4313252602 cites W2040310032 @default.
- W4313252602 cites W2040920982 @default.
- W4313252602 cites W2051571199 @default.
- W4313252602 cites W2064625584 @default.
- W4313252602 cites W2082129253 @default.
- W4313252602 cites W2097231210 @default.
- W4313252602 cites W2101723065 @default.
- W4313252602 cites W2148694408 @default.
- W4313252602 cites W2335306347 @default.
- W4313252602 cites W2470775293 @default.
- W4313252602 cites W2508809892 @default.
- W4313252602 cites W2562144926 @default.
- W4313252602 cites W2571110907 @default.
- W4313252602 cites W2807934525 @default.
- W4313252602 cites W2983456517 @default.
- W4313252602 cites W3006787392 @default.
- W4313252602 cites W3048577930 @default.
- W4313252602 cites W3092449887 @default.
- W4313252602 cites W3194798628 @default.
- W4313252602 cites W4220964346 @default.
- W4313252602 cites W2909711539 @default.
- W4313252602 doi "https://doi.org/10.1016/j.jmro.2022.100089" @default.
- W4313252602 hasPublicationYear "2023" @default.
- W4313252602 type Work @default.
- W4313252602 citedByCount "2" @default.
- W4313252602 countsByYear W43132526022023 @default.
- W4313252602 crossrefType "journal-article" @default.
- W4313252602 hasAuthorship W4313252602A5019419722 @default.
- W4313252602 hasAuthorship W4313252602A5049190497 @default.
- W4313252602 hasAuthorship W4313252602A5086812846 @default.
- W4313252602 hasBestOaLocation W43132526021 @default.
- W4313252602 hasConcept C105795698 @default.
- W4313252602 hasConcept C113196181 @default.
- W4313252602 hasConcept C121332964 @default.
- W4313252602 hasConcept C1276947 @default.
- W4313252602 hasConcept C153202636 @default.
- W4313252602 hasConcept C15744967 @default.
- W4313252602 hasConcept C161584116 @default.
- W4313252602 hasConcept C163111631 @default.
- W4313252602 hasConcept C178790620 @default.
- W4313252602 hasConcept C182155053 @default.
- W4313252602 hasConcept C185592680 @default.
- W4313252602 hasConcept C186060115 @default.
- W4313252602 hasConcept C192562407 @default.
- W4313252602 hasConcept C2776029896 @default.
- W4313252602 hasConcept C2778112365 @default.
- W4313252602 hasConcept C2780167933 @default.
- W4313252602 hasConcept C33923547 @default.
- W4313252602 hasConcept C41008148 @default.
- W4313252602 hasConcept C43617362 @default.
- W4313252602 hasConcept C46141821 @default.
- W4313252602 hasConcept C4839761 @default.
- W4313252602 hasConcept C55493867 @default.
- W4313252602 hasConcept C67787023 @default.
- W4313252602 hasConcept C76155785 @default.
- W4313252602 hasConcept C77805123 @default.
- W4313252602 hasConcept C86803240 @default.
- W4313252602 hasConcept C94915269 @default.
- W4313252602 hasConceptScore W4313252602C105795698 @default.
- W4313252602 hasConceptScore W4313252602C113196181 @default.
- W4313252602 hasConceptScore W4313252602C121332964 @default.
- W4313252602 hasConceptScore W4313252602C1276947 @default.
- W4313252602 hasConceptScore W4313252602C153202636 @default.
- W4313252602 hasConceptScore W4313252602C15744967 @default.
- W4313252602 hasConceptScore W4313252602C161584116 @default.
- W4313252602 hasConceptScore W4313252602C163111631 @default.
- W4313252602 hasConceptScore W4313252602C178790620 @default.
- W4313252602 hasConceptScore W4313252602C182155053 @default.
- W4313252602 hasConceptScore W4313252602C185592680 @default.
- W4313252602 hasConceptScore W4313252602C186060115 @default.
- W4313252602 hasConceptScore W4313252602C192562407 @default.
- W4313252602 hasConceptScore W4313252602C2776029896 @default.
- W4313252602 hasConceptScore W4313252602C2778112365 @default.
- W4313252602 hasConceptScore W4313252602C2780167933 @default.
- W4313252602 hasConceptScore W4313252602C33923547 @default.
- W4313252602 hasConceptScore W4313252602C41008148 @default.
- W4313252602 hasConceptScore W4313252602C43617362 @default.
- W4313252602 hasConceptScore W4313252602C46141821 @default.
- W4313252602 hasConceptScore W4313252602C4839761 @default.
- W4313252602 hasConceptScore W4313252602C55493867 @default.
- W4313252602 hasConceptScore W4313252602C67787023 @default.
- W4313252602 hasConceptScore W4313252602C76155785 @default.
- W4313252602 hasConceptScore W4313252602C77805123 @default.
- W4313252602 hasConceptScore W4313252602C86803240 @default.