Matches in SemOpenAlex for { <https://semopenalex.org/work/W4313252786> ?p ?o ?g. }
- W4313252786 endingPage "119809" @default.
- W4313252786 startingPage "119809" @default.
- W4313252786 abstract "Human neuromagnetic activity is characterised by a complex combination of transient bursts with varying spatial and temporal characteristics. The characteristics of these transient bursts change during task performance and normal ageing in ways that can inform about underlying cortical sources. Many methods have been proposed to detect transient bursts, with the most successful ones being those that employ multi-channel, data-driven approaches to minimize bias in the detection procedure. There has been little research, however, into the application of these data-driven methods to large datasets for group-level analyses. In the current work, we apply a data-driven convolutional dictionary learning (CDL) approach to detect neuromagnetic transient bursts in a large group of healthy participants from the Cam-CAN dataset. CDL was used to extract repeating spatiotemporal motifs in 538 participants between the ages of 18–88 during a sensorimotor task. Motifs were then clustered across participants based on similarity, and relevant task-related clusters were analysed for age-related trends in their spatiotemporal characteristics. Seven task-related motifs resembling known transient burst types were identified through this analysis, including beta, mu, and alpha type bursts. All burst types showed positive trends in their activation levels with age that could be explained by increasing burst rate with age. This work validated the data-driven CDL approach for transient burst detection on a large dataset and identified robust information about the complex characteristics of human brain signals and how they change with age." @default.
- W4313252786 created "2023-01-06" @default.
- W4313252786 creator A5013035873 @default.
- W4313252786 creator A5018256474 @default.
- W4313252786 creator A5019922262 @default.
- W4313252786 creator A5040145457 @default.
- W4313252786 creator A5075323166 @default.
- W4313252786 date "2023-02-01" @default.
- W4313252786 modified "2023-09-30" @default.
- W4313252786 title "Using convolutional dictionary learning to detect task-related neuromagnetic transients and ageing trends in a large open-access dataset" @default.
- W4313252786 cites W1824528708 @default.
- W4313252786 cites W1967125431 @default.
- W4313252786 cites W1968697559 @default.
- W4313252786 cites W1969212158 @default.
- W4313252786 cites W1970831100 @default.
- W4313252786 cites W1977110382 @default.
- W4313252786 cites W1979478312 @default.
- W4313252786 cites W1996895443 @default.
- W4313252786 cites W2004293194 @default.
- W4313252786 cites W2007221293 @default.
- W4313252786 cites W2049061256 @default.
- W4313252786 cites W2051391557 @default.
- W4313252786 cites W2052471278 @default.
- W4313252786 cites W2056341661 @default.
- W4313252786 cites W2079294029 @default.
- W4313252786 cites W2090664364 @default.
- W4313252786 cites W2101135654 @default.
- W4313252786 cites W2109286470 @default.
- W4313252786 cites W2110437310 @default.
- W4313252786 cites W2110527401 @default.
- W4313252786 cites W2113319997 @default.
- W4313252786 cites W2116451892 @default.
- W4313252786 cites W2123649031 @default.
- W4313252786 cites W2130915922 @default.
- W4313252786 cites W2135595031 @default.
- W4313252786 cites W2146141169 @default.
- W4313252786 cites W2151130155 @default.
- W4313252786 cites W2151721316 @default.
- W4313252786 cites W2155963684 @default.
- W4313252786 cites W2163028963 @default.
- W4313252786 cites W2175184313 @default.
- W4313252786 cites W2205344143 @default.
- W4313252786 cites W2229256208 @default.
- W4313252786 cites W2260069778 @default.
- W4313252786 cites W2297363866 @default.
- W4313252786 cites W2310622091 @default.
- W4313252786 cites W2468463735 @default.
- W4313252786 cites W2552268820 @default.
- W4313252786 cites W2609674590 @default.
- W4313252786 cites W2767814366 @default.
- W4313252786 cites W2772704314 @default.
- W4313252786 cites W2782884261 @default.
- W4313252786 cites W2794283863 @default.
- W4313252786 cites W2914959486 @default.
- W4313252786 cites W2918261798 @default.
- W4313252786 cites W2954952848 @default.
- W4313252786 cites W2977375428 @default.
- W4313252786 cites W2987045943 @default.
- W4313252786 cites W2989694357 @default.
- W4313252786 cites W2998776938 @default.
- W4313252786 cites W3015242258 @default.
- W4313252786 cites W3016239063 @default.
- W4313252786 cites W3078201539 @default.
- W4313252786 cites W3094093915 @default.
- W4313252786 cites W3179988546 @default.
- W4313252786 cites W3195894523 @default.
- W4313252786 cites W3208657838 @default.
- W4313252786 cites W4206195578 @default.
- W4313252786 cites W4210709080 @default.
- W4313252786 cites W4220762953 @default.
- W4313252786 doi "https://doi.org/10.1016/j.neuroimage.2022.119809" @default.
- W4313252786 hasPubMedId "https://pubmed.ncbi.nlm.nih.gov/36584759" @default.
- W4313252786 hasPublicationYear "2023" @default.
- W4313252786 type Work @default.
- W4313252786 citedByCount "0" @default.
- W4313252786 crossrefType "journal-article" @default.
- W4313252786 hasAuthorship W4313252786A5013035873 @default.
- W4313252786 hasAuthorship W4313252786A5018256474 @default.
- W4313252786 hasAuthorship W4313252786A5019922262 @default.
- W4313252786 hasAuthorship W4313252786A5040145457 @default.
- W4313252786 hasAuthorship W4313252786A5075323166 @default.
- W4313252786 hasBestOaLocation W43132527861 @default.
- W4313252786 hasConcept C111919701 @default.
- W4313252786 hasConcept C119857082 @default.
- W4313252786 hasConcept C153180895 @default.
- W4313252786 hasConcept C154945302 @default.
- W4313252786 hasConcept C162324750 @default.
- W4313252786 hasConcept C187736073 @default.
- W4313252786 hasConcept C2780451532 @default.
- W4313252786 hasConcept C2780799671 @default.
- W4313252786 hasConcept C41008148 @default.
- W4313252786 hasConceptScore W4313252786C111919701 @default.
- W4313252786 hasConceptScore W4313252786C119857082 @default.
- W4313252786 hasConceptScore W4313252786C153180895 @default.
- W4313252786 hasConceptScore W4313252786C154945302 @default.
- W4313252786 hasConceptScore W4313252786C162324750 @default.
- W4313252786 hasConceptScore W4313252786C187736073 @default.
- W4313252786 hasConceptScore W4313252786C2780451532 @default.